Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Distributed inference example for llava_next #3179

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
192 changes: 192 additions & 0 deletions examples/inference/distributed/llava_next_video.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import pathlib
import queue
import time
from concurrent.futures import ThreadPoolExecutor

import av
import fire
import numpy as np
import torch
from huggingface_hub import snapshot_download
from tqdm import tqdm
from transformers import LlavaNextVideoForConditionalGeneration, LlavaNextVideoProcessor

from accelerate import PartialState


START_TIME = time.strftime("%Y%m%d_%H%M%S")
DTYPE_MAP = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16}


"""
Example:

accelerate launch llava_next_video.py
"""


def save_results(output_queue: queue.Queue, output_dir: pathlib.Path):
count = 0
while True:
try:
item = output_queue.get(timeout=5)
if item is None:
break
prompt, video, generated_text = item
example_file = f"example_{count}"
temp_dir = os.path.join(output_dir, example_file)

metadata = {"prompt": prompt, "video": video, "generated_text": generated_text}
with open(temp_dir, "w") as f:
json.dump(metadata, f, indent=4)
count += 1

except queue.Empty:
continue


def get_batches(processed_videos, batch_size):
num_batches = (len(processed_videos) + batch_size - 1) // batch_size
batches = []

for i in range(num_batches):
start_index = i * batch_size
end_index = min((i + 1) * batch_size, len(processed_videos))
batch = processed_videos[start_index:end_index]
batches.append(batch)

return batches


def read_video_pyav(container, indices):
"""
Decode the video with PyAV decoder.
Args:
container (`av.container.input.InputContainer`): PyAV container.
indices (`List[int]`): List of frame indices to decode.
Returns:
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
"""
frames = []
container.seek(0)
start_index = indices[0]
end_index = indices[-1]
for i, frame in enumerate(container.decode(video=0)):
if i > end_index:
break
if i >= start_index and i in indices:
frames.append(frame)
return np.stack([x.to_ndarray(format="rgb24") for x in frames])


def get_video_paths(video_dir):
"""Get paths to all video files in the directory and its subdirectories."""
video_extensions = (".mp4", ".avi", ".mov", ".mkv") # Add more extensions if needed
video_paths = []

for root, _, files in os.walk(video_dir):
for file in files:
if file.lower().endswith(video_extensions):
video_paths.append(os.path.join(root, file))

return video_paths


def process_videos(video_paths, processor, prompt, frames_per_video):
"""Process a batch of videos and prepare them for the model."""
batch_inputs = []

for video_path in video_paths:
try:
with av.open(video_path) as container:
total_frames = container.streams.video[0].frames
indices = np.arange(0, total_frames, total_frames / frames_per_video).astype(int)
clip = read_video_pyav(container, indices)

processed = processor(text=prompt, videos=clip, return_tensors="pt")
batch_inputs.append(
{
"input_ids": processed["input_ids"],
"pixel_values_videos": processed["pixel_values_videos"],
"video": video_path,
}
)

except Exception as e:
print(f"Error processing video {video_path}: {str(e)}")
continue

return batch_inputs


def main(
model_name: str = "llava-hf/LLaVA-NeXT-Video-7B-hf",
save_dir: str = "./evaluation/examples",
prompt: str = "USER: <video>\nGenerate caption ASSISTANT:",
frames_per_video: int = 8,
max_new_tokens: int = 100,
batch_size: int = 4,
dtype: str = "fp16",
num_workers: int = 1,
low_mem: bool = True,
):
# Start up the distributed environment without needing the Accelerator.
distributed_state = PartialState()

processor = LlavaNextVideoProcessor.from_pretrained(model_name)
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
model_name, torch_dtype=DTYPE_MAP[dtype], low_cpu_mem_usage=low_mem, device_map=distributed_state.device
)

if distributed_state.is_main_process:
if not os.path.exists(save_dir):
os.makedirs(save_dir)
print(f"Directory '{save_dir}' created successfully.")
else:
print(f"Directory '{save_dir}' already exists.")

videos_dir = snapshot_download(repo_id="malterei/LLaVA-Video-small-swift", repo_type="dataset")
video_paths = get_video_paths(videos_dir)
processed_videos = process_videos(video_paths, processor, prompt, frames_per_video)
batches = get_batches(processed_videos, batch_size)

output_queue = queue.Queue()
save_thread = ThreadPoolExecutor(max_workers=num_workers)
save_future = save_thread.submit(save_results, output_queue, save_dir)
for _, batch_raw in tqdm(enumerate(batches), total=len(batches)):
try:
with distributed_state.split_between_processes(batch_raw) as batched_inputs:
for batch in batched_inputs:
output = model.generate(
input_ids=batch["input_ids"].to(distributed_state.device),
pixel_values_videos=batch["pixel_values_videos"].to(distributed_state.device, model.dtype),
max_new_tokens=max_new_tokens,
)
generated_text = processor.batch_decode(output, skip_special_tokens=True)
output_queue.put((prompt, batch["video"], generated_text))
finally:
output_queue.put(None)
save_thread.shutdown(wait=True)

save_future.result()
distributed_state.destroy_process_group()

VladOS95-cyber marked this conversation as resolved.
Show resolved Hide resolved

if __name__ == "__main__":
fire.Fire(main)
Loading