Skip to content

zezhishao/DailyArXiv

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Daily Papers

The project automatically fetches the latest papers from arXiv based on keywords.

The subheadings in the README file represent the search keywords.

Only the most recent articles for each keyword are retained, up to a maximum of 100 papers.

You can click the 'Watch' button to receive daily email notifications.

Last update: 2025-01-06

Time Series

Title Date Abstract Comment
Estimation of Long-Range Dependent Models with Missing Data: to Impute or not to Impute? 2025-01-02
Show

Among the most important models for long-range dependent time series is the class of ARFIMA$(p,d,q)$ (Autoregressive Fractionally Integrated Moving Average) models. Estimating the long-range dependence parameter $d$ in ARFIMA models is a well-studied problem, but the literature regarding the estimation of $d$ in the presence of missing data is very sparse. There are two basic approaches to dealing with the problem: missing data can be imputed using some plausible method, and then the estimation can proceed as if no data were missing, or we can use a specially tailored methodology to estimate $d$ in the presence of missing data. In this work, we review some of the methods available for both approaches and compare them through a Monte Carlo simulation study. We present a comparison among 35 different setups to estimate $d$, under tenths of different scenarios, considering percentages of missing data ranging from as few as 10% up to 70% and several levels of dependence.

A Unified Hyperparameter Optimization Pipeline for Transformer-Based Time Series Forecasting Models 2025-01-02
Show

Transformer-based models for time series forecasting (TSF) have attracted significant attention in recent years due to their effectiveness and versatility. However, these models often require extensive hyperparameter optimization (HPO) to achieve the best possible performance, and a unified pipeline for HPO in transformer-based TSF remains lacking. In this paper, we present one such pipeline and conduct extensive experiments on several state-of-the-art (SOTA) transformer-based TSF models. These experiments are conducted on standard benchmark datasets to evaluate and compare the performance of different models, generating practical insights and examples. Our pipeline is generalizable beyond transformer-based architectures and can be applied to other SOTA models, such as Mamba and TimeMixer, as demonstrated in our experiments. The goal of this work is to provide valuable guidance to both industry practitioners and academic researchers in efficiently identifying optimal hyperparameters suited to their specific domain applications. The code and complete experimental results are available on GitHub.

Text2Data: Low-Resource Data Generation with Textual Control 2025-01-02
Show

Natural language serves as a common and straightforward signal for humans to interact seamlessly with machines. Recognizing the importance of this interface, the machine learning community is investing considerable effort in generating data that is semantically coherent with textual instructions. While strides have been made in text-to-data generation spanning image editing, audio synthesis, video creation, and beyond, low-resource areas characterized by expensive annotations or complex data structures, such as molecules, motion dynamics, and time series, often lack textual labels. This deficiency impedes supervised learning, thereby constraining the application of advanced generative models for text-to-data tasks. In response to these challenges in the low-resource scenario, we propose Text2Data, a novel approach that utilizes unlabeled data to understand the underlying data distribution through an unsupervised diffusion model. Subsequently, it undergoes controllable finetuning via a novel constraint optimization-based learning objective that ensures controllability and effectively counteracts catastrophic forgetting. Comprehensive experiments demonstrate that Text2Data is able to achieve enhanced performance regarding controllability across various modalities, including molecules, motions and time series, when compared to existing baselines.

Thirt...

Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)

Enhanced Differential Testing in Emerging Database Systems 2025-01-02
Show

In recent years, a plethora of database management systems have surfaced to meet the demands of various scenarios. Emerging database systems, such as time-series and streaming database systems, are tailored to specific use cases requiring enhanced functionality and performance. However, as they are typically less mature, there can be bugs that either cause incorrect results or errors impacting reliability. To tackle this, we propose enhanced differential testing to uncover various bugs in emerging SQL-like database systems. The challenge is how to deal with differences of these emerging databases. Our insight is that many emerging database systems are conceptually extensions of relational database systems, making it possible to reveal logic bugs leveraging existing relational, known-reliable database systems. However, due to inevitable syntax or semantics gaps, it remains challenging to scale differential testing to various emerging database systems. We enhance differential testing for emerging database systems with three steps: (i) identifying shared clauses; (ii) extending shared clauses via mapping new features back to existing clauses of relational database systems; and (iii) generating differential inputs using extended shared clauses. We implemented our approach in a tool called SQLxDiff and applied it to four popular emerging database systems. In total, we found 57 unknown bugs, of which 17 were logic bugs and 40 were internal errors. Overall, vendors fixed 50 bugs and confirmed 5. Our results demonstrate the practicality and effectiveness of SQLxDiff in detecting bugs in emerging database systems, which has the potential to improve the reliability of their applications.

10 pages, 6 figures
Bridging Simplicity and Sophistication using GLinear: A Novel Architecture for Enhanced Time Series Prediction 2025-01-02
Show

Time Series Forecasting (TSF) is an important application across many fields. There is a debate about whether Transformers, despite being good at understanding long sequences, struggle with preserving temporal relationships in time series data. Recent research suggests that simpler linear models might outperform or at least provide competitive performance compared to complex Transformer-based models for TSF tasks. In this paper, we propose a novel data-efficient architecture, GLinear, for multivariate TSF that exploits periodic patterns to provide better accuracy. It also provides better prediction accuracy by using a smaller amount of historical data compared to other state-of-the-art linear predictors. Four different datasets (ETTh1, Electricity, Traffic, and Weather) are used to evaluate the performance of the proposed predictor. A performance comparison with state-of-the-art linear architectures (such as NLinear, DLinear, and RLinear) and transformer-based time series predictor (Autoformer) shows that the GLinear, despite being parametrically efficient, significantly outperforms the existing architectures in most cases of multivariate TSF. We hope that the proposed GLinear opens new fronts of research and development of simpler and more sophisticated architectures for data and computationally efficient time-series analysis. The source code is publicly available on GitHub.

Submi...

Submitted to IEEE Transactions on Emerging Topics in Computational Intelligence

The Sigma-max System Induced from Randomness & Fuzziness and its Application in Time Series Prediction 2025-01-02
Show

This paper managed to induce probability theory (sigma system) and possibility theory (max system) respectively from the clearly-defined randomness and fuzziness, while focusing the question why the key axiom of "maxitivity" is adopted for possibility measure. Such an objective is achieved by following three steps: a) the establishment of mathematical definitions of randomness and fuzziness; b) the development of intuitive definition of possibility as measure of fuzziness based on compatibility interpretation; c) the abstraction of the axiomatic definitions of probability/ possibility from their intuitive definitions, by taking advantage of properties of the well-defined randomness and fuzziness. We derived the conclusion that "max" is the only but un-strict disjunctive operator that is applicable across the fuzzy event space, and is an exact operator for extracting the value from the fuzzy sample space that leads to the largest possibility of one. Then a demonstration example of stock price prediction is presented, which confirms that max inference indeed exhibits distinctive performance, with an improvement up to 18.99%, over sigma inference for the investigated application. Our work provides a physical foundation for the axiomatic definition of possibility for the measure of fuzziness, which hopefully would facilitate wider adoption of possibility theory in practice.

CryptoMamba: Leveraging State Space Models for Accurate Bitcoin Price Prediction 2025-01-02
Show

Predicting Bitcoin price remains a challenging problem due to the high volatility and complex non-linear dynamics of cryptocurrency markets. Traditional time-series models, such as ARIMA and GARCH, and recurrent neural networks, like LSTMs, have been widely applied to this task but struggle to capture the regime shifts and long-range dependencies inherent in the data. In this work, we propose CryptoMamba, a novel Mamba-based State Space Model (SSM) architecture designed to effectively capture long-range dependencies in financial time-series data. Our experiments show that CryptoMamba not only provides more accurate predictions but also offers enhanced generalizability across different market conditions, surpassing the limitations of previous models. Coupled with trading algorithms for real-world scenarios, CryptoMamba demonstrates its practical utility by translating accurate forecasts into financial outcomes. Our findings signal a huge advantage for SSMs in stock and cryptocurrency price forecasting tasks.

Population Aware Diffusion for Time Series Generation 2025-01-01
Show

Diffusion models have shown promising ability in generating high-quality time series (TS) data. Despite the initial success, existing works mostly focus on the authenticity of data at the individual level, but pay less attention to preserving the population-level properties on the entire dataset. Such population-level properties include value distributions for each dimension and distributions of certain functional dependencies (e.g., cross-correlation, CC) between different dimensions. For instance, when generating house energy consumption TS data, the value distributions of the outside temperature and the kitchen temperature should be preserved, as well as the distribution of CC between them. Preserving such TS population-level properties is critical in maintaining the statistical insights of the datasets, mitigating model bias, and augmenting downstream tasks like TS prediction. Yet, it is often overlooked by existing models. Hence, data generated by existing models often bear distribution shifts from the original data. We propose Population-aware Diffusion for Time Series (PaD-TS), a new TS generation model that better preserves the population-level properties. The key novelties of PaD-TS include 1) a new training method explicitly incorporating TS population-level property preservation, and 2) a new dual-channel encoder model architecture that better captures the TS data structure. Empirical results in major benchmark datasets show that PaD-TS can improve the average CC distribution shift score between real and synthetic data by 5.9x while maintaining a performance comparable to state-of-the-art models on individual-level authenticity.

Accep...

Accepted for publication at AAAI-2025, 8 pages

Evaluating Time Series Foundation Models on Noisy Periodic Time Series 2025-01-01
Show

While recent advancements in foundation models have significantly impacted machine learning, rigorous tests on the performance of time series foundation models (TSFMs) remain largely underexplored. This paper presents an empirical study evaluating the zero-shot, long-horizon forecasting abilities of several leading TSFMs over two synthetic datasets constituting noisy periodic time series. We assess model efficacy across different noise levels, underlying frequencies, and sampling rates. As benchmarks for comparison, we choose two statistical techniques: a Fourier transform (FFT)-based approach and a linear autoregressive (AR) model. Our findings demonstrate that while for time series with bounded periods and higher sampling rates, TSFMs can match or outperform the statistical approaches, their forecasting abilities deteriorate with longer periods, higher noise levels, lower sampling rates and more complex shapes of the time series.

Decoding the Flow: CauseMotion for Emotional Causality Analysis in Long-form Conversations 2025-01-01
Show

Long-sequence causal reasoning seeks to uncover causal relationships within extended time series data but is hindered by complex dependencies and the challenges of validating causal links. To address the limitations of large-scale language models (e.g., GPT-4) in capturing intricate emotional causality within extended dialogues, we propose CauseMotion, a long-sequence emotional causal reasoning framework grounded in Retrieval-Augmented Generation (RAG) and multimodal fusion. Unlike conventional methods relying only on textual information, CauseMotion enriches semantic representations by incorporating audio-derived features-vocal emotion, emotional intensity, and speech rate-into textual modalities. By integrating RAG with a sliding window mechanism, it effectively retrieves and leverages contextually relevant dialogue segments, thus enabling the inference of complex emotional causal chains spanning multiple conversational turns. To evaluate its effectiveness, we constructed the first benchmark dataset dedicated to long-sequence emotional causal reasoning, featuring dialogues with over 70 turns. Experimental results demonstrate that the proposed RAG-based multimodal integrated approach, the efficacy of substantially enhances both the depth of emotional understanding and the causal inference capabilities of large-scale language models. A GLM-4 integrated with CauseMotion achieves an 8.7% improvement in causal accuracy over the original model and surpasses GPT-4o by 1.2%. Additionally, on the publicly available DiaASQ dataset, CauseMotion-GLM-4 achieves state-of-the-art results in accuracy, F1 score, and causal reasoning accuracy.

7pages
ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning 2025-01-01
Show

Understanding time series is crucial for its application in real-world scenarios. Recently, large language models (LLMs) have been increasingly applied to time series tasks, leveraging their strong language capabilities to enhance various applications. However, research on multimodal LLMs (MLLMs) for time series understanding and reasoning remains limited, primarily due to the scarcity of high-quality datasets that align time series with textual information. This paper introduces ChatTS, a novel MLLM designed for time series analysis. ChatTS treats time series as a modality, similar to how vision MLLMs process images, enabling it to perform both understanding and reasoning with time series. To address the scarcity of training data, we propose an attribute-based method for generating synthetic time series with detailed attribute descriptions. We further introduce Time Series Evol-Instruct, a novel approach that generates diverse time series Q&As, enhancing the model's reasoning capabilities. To the best of our knowledge, ChatTS is the first TS-MLLM that takes multivariate time series as input for understanding and reasoning, which is fine-tuned exclusively on synthetic datasets. We evaluate its performance using benchmark datasets with real-world data, including six alignment tasks and four reasoning tasks. Our results show that ChatTS significantly outperforms existing vision-based MLLMs (e.g., GPT-4o) and text/agent-based LLMs, achieving a 46.0% improvement in alignment tasks and a 25.8% improvement in reasoning tasks.

TOTEM: TOkenized Time Series EMbeddings for General Time Series Analysis 2025-01-01
Show

This work studies the problem of time series analysis with generalist (or foundation) models, which are models trained across many data domains. Drawing inspiration from the widespread success of large language models, we consider the simple strategy of discretely tokenizing time series data drawn from a myriad of datasets via self-supervision, then using the fixed tokenization to solve a variety of tasks across many data domains. Canonically, time series models are either trained on a single dataset or built in a task-specific manner (e.g., a forecasting-only model), where many use patches of time as inputs to the model. As such, performant generalist, discrete representation time series models explored across many tasks are of value. Our method, TOkenized Time Series EMbeddings (TOTEM), produces such generalist time series models with minimal or no fine-tuning while exhibiting strong zero-shot performance. We evaluate TOTEM extensively over nearly 500 experiments on three commonly-studied time series tasks with real-world data: imputation (17 baselines, 12 datasets), anomaly detection (19 baselines, 25 datasets), and forecasting (14 baselines, 12 datasets). We conclude that TOTEM matches or outperforms existing state-of-the-art models in both the canonical specialist setting (i.e., training one model on one domain) as well as the generalist setting (i.e., training a single model on many domains), which demonstrates the efficacy of tokenization for general time series analysis. The open-source implementation is available here: https://github.com/SaberaTalukder/TOTEM; a video summary is available here: https://www.youtube.com/watch?v=OqrCpdb6MJk.

Accep...

Accepted to TMLR (12/24), 33 pages. TMLR link: https://openreview.net/pdf?id=QlTLkH6xRC

Titans: Learning to Memorize at Test Time 2024-12-31
Show

Over more than a decade there has been an extensive research effort on how to effectively utilize recurrent models and attention. While recurrent models aim to compress the data into a fixed-size memory (called hidden state), attention allows attending to the entire context window, capturing the direct dependencies of all tokens. This more accurate modeling of dependencies, however, comes with a quadratic cost, limiting the model to a fixed-length context. We present a new neural long-term memory module that learns to memorize historical context and helps attention to attend to the current context while utilizing long past information. We show that this neural memory has the advantage of fast parallelizable training while maintaining a fast inference. From a memory perspective, we argue that attention due to its limited context but accurate dependency modeling performs as a short-term memory, while neural memory due to its ability to memorize the data, acts as a long-term, more persistent, memory. Based on these two modules, we introduce a new family of architectures, called Titans, and present three variants to address how one can effectively incorporate memory into this architecture. Our experimental results on language modeling, common-sense reasoning, genomics, and time series tasks show that Titans are more effective than Transformers and recent modern linear recurrent models. They further can effectively scale to larger than 2M context window size with higher accuracy in needle-in-haystack tasks compared to baselines.

Per Subject Complexity in Eye Movement Prediction 2024-12-31
Show

Eye movement prediction is a promising area of research to compensate for the latency introduced by eye-tracking systems in virtual reality devices. In this study, we comprehensively analyze the complexity of the eye movement prediction task associated with subjects. We use three fundamentally different models within the analysis: the lightweight Long Short-Term Memory network (LSTM), the transformer-based network for multivariate time series representation learning (TST), and the Oculomotor Plant Mathematical Model wrapped in the Kalman Filter framework (OPKF). Each solution is assessed following a sample-to-event evaluation strategy and employing the new event-to-subject metrics. Our results show that the different models maintained similar prediction performance trends pertaining to subjects. We refer to these outcomes as per-subject complexity since some subjects' data pose a more significant challenge for models. Along with the detailed correlation analysis, this report investigates the source of the per-subject complexity and discusses potential solutions to overcome it.

14 pages
STARFormer: A Novel Spatio-Temporal Aggregation Reorganization Transformer of FMRI for Brain Disorder Diagnosis 2024-12-31
Show

Many existing methods that use functional magnetic resonance imaging (fMRI) classify brain disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), often overlook the integration of spatial and temporal dependencies of the blood oxygen level-dependent (BOLD) signals, which may lead to inaccurate or imprecise classification results. To solve this problem, we propose a Spatio-Temporal Aggregation eorganization ransformer (STARFormer) that effectively captures both spatial and temporal features of BOLD signals by incorporating three key modules. The region of interest (ROI) spatial structure analysis module uses eigenvector centrality (EC) to reorganize brain regions based on effective connectivity, highlighting critical spatial relationships relevant to the brain disorder. The temporal feature reorganization module systematically segments the time series into equal-dimensional window tokens and captures multiscale features through variable window and cross-window attention. The spatio-temporal feature fusion module employs a parallel transformer architecture with dedicated temporal and spatial branches to extract integrated features. The proposed STARFormer has been rigorously evaluated on two publicly available datasets for the classification of ASD and ADHD. The experimental results confirm that the STARFormer achieves state-of-the-art performance across multiple evaluation metrics, providing a more accurate and reliable tool for the diagnosis of brain disorders and biomedical research. The codes will be available at: https://github.com/NZWANG/STARFormer.

Analyzing Scalogram Ridges in the Presence of Noise 2024-12-31
Show

While ridges in the scalogram, determined by the squared modulus of analytic wavelet transform (AWT), have been widely applied in time series analysis and time-frequency analysis, their behavior in noisy environments remains underexplored. We fill in this gap in this paper. We define ridges as paths formed by local maximizers of the scalogram along the scale axis, and analyze their properties when the signal is contaminated by stationary Gaussian noise. In addition to establishing several key properties of the AWT for random processes, we investigate the probabilistic characteristics of the resulting random ridge points in the scalogram. Specifically, we establish the uniqueness property of the ridge point at individual time instances and prove the upper hemicontinuity of the set of ridge points. Furthermore, we derive bounds on the probability that the deviation between the ridge points of noisy and clean signals exceeds a specified threshold. These bounds are expressed in terms of constants related to the signal-to-noise ratio and apply when the signal satisfies the adaptive harmonic model and is corrupted by a stationary Gaussian process. To achieve these results, we derive maximal inequalities for the complex modulus of nonstationary Gaussian processes, leveraging classical tools such as the Borell-TIS inequality and Dudley's theorem, which might be of independent interest.

Spline Autoregression Method for Estimation of Quantile Spectrum 2024-12-30
Show

The quantile spectrum was introduced in Li (2012; 2014) as an alternative tool for spectral analysis of time series. It has the capability of providing a richer view of time series data than that offered by the ordinary spectrum especially for nonlinear dynamics such as stochastic volatility. A novel method, called spline autoregression (SAR), is proposed in this paper for estimating the quantile spectrum as a bivaraite function of frequency and quantile level, under the assumption that the quantile spectrum varies smoothly with the quantile level. The SAR method is facilitated by the quantile discrete Fourier transform (QDFT) based on trigonometric quantile regression. It is enabled by the resulting time-domain quantile series (QSER) which represents properly scaled oscillatory characteristics of the original time series around a quantile. A functional autoregressive (AR) model is fitted to the QSER on a grid of quantile levels by penalized least-squares with the AR coefficients represented as smoothing splines of the quantile level. While the ordinary AR model is widely used for conventional spectral estimation, the proposed SAR method provides an effective way of estimating the quantile spectrum as a bivariate function in comparison with the alternatives. This is confirmed by a simulation study.

A portmanteau test for multivariate non-stationary functional time series with an increasing number of lags 2024-12-30
Show

Multivariate locally stationary functional time series provide a flexible framework for modeling complex data structures exhibiting both temporal and spatial dependencies while allowing for time-varying data generating mechanism. In this paper, we introduce a specialized portmanteau-type test tailored for assessing white noise assumptions for multivariate locally stationary functional time series without dimension reduction. A simple bootstrap procedure is proposed to implement the test because the limiting distribution can be non-standard or even does not exist. Our approach is based on a new Gaussian approximation result for a maximum of degenerate $U$-statistics of second-order functional time series, which is of independent interest. Through theoretical analysis and simulation studies, we demonstrate the efficacy and adaptability of the proposed method in detecting departures from white noise assumptions in multivariate locally stationary functional time series.

Ancestor regression in structural vector autoregressive models 2024-12-30
Show

We present a new method for causal discovery in linear structural vector autoregressive models. We adapt an idea designed for independent observations to the case of time series while retaining its favorable properties, i.e., explicit error control for false causal discovery, at least asymptotically. We apply our method to several real-world bivariate time series datasets and discuss its findings which mostly agree with common understanding. The arrow of time in a model can be interpreted as background knowledge on possible causal mechanisms. Hence, our ideas could be extended to incorporating different background knowledge, even for independent observations.

An Unsupervised Anomaly Detection in Electricity Consumption Using Reinforcement Learning and Time Series Forest Based Framework 2024-12-30
Show

Anomaly detection (AD) plays a crucial role in time series applications, primarily because time series data is employed across real-world scenarios. Detecting anomalies poses significant challenges since anomalies take diverse forms making them hard to pinpoint accurately. Previous research has explored different AD models, making specific assumptions with varying sensitivity toward particular anomaly types. To address this issue, we propose a novel model selection for unsupervised AD using a combination of time series forest (TSF) and reinforcement learning (RL) approaches that dynamically chooses an AD technique. Our approach allows for effective AD without explicitly depending on ground truth labels that are often scarce and expensive to obtain. Results from the real-time series dataset demonstrate that the proposed model selection approach outperforms all other AD models in terms of the F1 score metric. For the synthetic dataset, our proposed model surpasses all other AD models except for KNN, with an impressive F1 score of 0.989. The proposed model selection framework also exceeded the performance of GPT-4 when prompted to act as an anomaly detector on the synthetic dataset. Exploring different reward functions revealed that the original reward function in our proposed AD model selection approach yielded the best overall scores. We evaluated the performance of the six AD models on an additional three datasets, having global, local, and clustered anomalies respectively, showing that each AD model exhibited distinct performance depending on the type of anomalies. This emphasizes the significance of our proposed AD model selection framework, maintaining high performance across all datasets, and showcasing superior performance across different anomaly types.

Text Classification: Neural Networks VS Machine Learning Models VS Pre-trained Models 2024-12-30
Show

Text classification is a very common task nowadays and there are many efficient methods and algorithms that we can employ to accomplish it. Transformers have revolutionized the field of deep learning, particularly in Natural Language Processing (NLP) and have rapidly expanded to other domains such as computer vision, time-series analysis and more. The transformer model was firstly introduced in the context of machine translation and its architecture relies on self-attention mechanisms to capture complex relationships within data sequences. It is able to handle long-range dependencies more effectively than traditional neural networks (such as Recurrent Neural Networks and Multilayer Perceptrons). In this work, we present a comparison between different techniques to perform text classification. We take into consideration seven pre-trained models, three standard neural networks and three machine learning models. For standard neural networks and machine learning models we also compare two embedding techniques: TF-IDF and GloVe, with the latter consistently outperforming the former. Finally, we demonstrate the results from our experiments where pre-trained models such as BERT and DistilBERT always perform better than standard models/algorithms.

Graph Mixture of Experts and Memory-augmented Routers for Multivariate Time Series Anomaly Detection 2024-12-30
Show

Multivariate time series (MTS) anomaly detection is a critical task that involves identifying abnormal patterns or events in data that consist of multiple interrelated time series. In order to better model the complex interdependence between entities and the various inherent characteristics of each entity, the GNN based methods are widely adopted by existing methods. In each layer of GNN, node features aggregate information from their neighboring nodes to update their information. In doing so, from shallow layer to deep layer in GNN, original individual node features continue to be weakened and more structural information,i.e., from short-distance neighborhood to long-distance neighborhood, continues to be enhanced. However, research to date has largely ignored the understanding of how hierarchical graph information is represented and their characteristics that can benefit anomaly detection. Existing methods simply leverage the output from the last layer of GNN for anomaly estimation while neglecting the essential information contained in the intermediate GNN layers. To address such limitations, in this paper, we propose a Graph Mixture of Experts (Graph-MoE) network for multivariate time series anomaly detection, which incorporates the mixture of experts (MoE) module to adaptively represent and integrate hierarchical multi-layer graph information into entity representations. It is worth noting that our Graph-MoE can be integrated into any GNN-based MTS anomaly detection method in a plug-and-play manner. In addition, the memory-augmented routers are proposed in this paper to capture the correlation temporal information in terms of the global historical features of MTS to adaptively weigh the obtained entity representations to achieve successful anomaly estimation. Extensive experiments on five challenging datasets prove the superiority of our approach and each proposed module.

Accep...

Accepted by AAAI 2025

Timeseria: an object-oriented time series processing library 2024-12-30
Show

Timeseria is an object-oriented time series processing library implemented in Python, which aims at making it easier to manipulate time series data and to build statistical and machine learning models on top of it. Unlike common data analysis frameworks, it builds up from well defined and reusable logical units (objects), which can be easily combined together in order to ensure a high level of consistency. Thanks to this approach, Timeseria can address by design several non-trivial issues which are often underestimated, such as handling data losses, non-uniform sampling rates, differences between aggregated data and punctual observations, time zones, daylight saving times, and more. Timeseria comes with a comprehensive set of base data structures, data transformations for resampling and aggregation, common data manipulation operations, and extensible models for data reconstruction, forecasting and anomaly detection. It also integrates a fully featured, interactive plotting engine capable of handling even millions of data points.

From sparse to dense functional time series: phase transitions of detecting structural breaks and beyond 2024-12-30
Show

We develop a novel methodology for detecting abrupt break points in mean functions of functional time series, adaptable to arbitrary sampling schemes. By employing B-spline smoothing, we introduce $\mathcal L_{\infty}$ and $\mathcal L_2$ test statistics statistics based on a smoothed cumulative summation (CUMSUM) process, and derive the corresponding asymptotic distributions under the null and local alternative hypothesis, as well as the phase transition boundary from sparse to dense. We further establish the convergence rate of the proposed break point estimators and conduct statistical inference on the jump magnitude based on the estimated break point, also applicable across sparsely, semi-densely, and densely, observed random functions. Extensive numerical experiments validate the effectiveness of the proposed procedures. To illustrate the practical relevance, we apply the developed methods to analyze electricity price data and temperature data.

TimeRAF: Retrieval-Augmented Foundation model for Zero-shot Time Series Forecasting 2024-12-30
Show

Time series forecasting plays a crucial role in data mining, driving rapid advancements across numerous industries. With the emergence of large models, time series foundation models (TSFMs) have exhibited remarkable generalization capabilities, such as zero-shot learning, through large-scale pre-training. Meanwhile, Retrieval-Augmented Generation (RAG) methods have been widely employed to enhance the performance of foundation models on unseen data, allowing models to access to external knowledge. In this paper, we introduce TimeRAF, a Retrieval-Augmented Forecasting model that enhance zero-shot time series forecasting through retrieval-augmented techniques. We develop customized time series knowledge bases that are tailored to the specific forecasting tasks. TimeRAF employs an end-to-end learnable retriever to extract valuable information from the knowledge base. Additionally, we propose Channel Prompting for knowledge integration, which effectively extracts relevant information from the retrieved knowledge along the channel dimension. Extensive experiments demonstrate the effectiveness of our model, showing significant improvement across various domains and datasets.

Frequency-Masked Embedding Inference: A Non-Contrastive Approach for Time Series Representation Learning 2024-12-30
Show

Contrastive learning underpins most current self-supervised time series representation methods. The strategy for constructing positive and negative sample pairs significantly affects the final representation quality. However, due to the continuous nature of time series semantics, the modeling approach of contrastive learning struggles to accommodate the characteristics of time series data. This results in issues such as difficulties in constructing hard negative samples and the potential introduction of inappropriate biases during positive sample construction. Although some recent works have developed several scientific strategies for constructing positive and negative sample pairs with improved effectiveness, they remain constrained by the contrastive learning framework. To fundamentally overcome the limitations of contrastive learning, this paper introduces Frequency-masked Embedding Inference (FEI), a novel non-contrastive method that completely eliminates the need for positive and negative samples. The proposed FEI constructs 2 inference branches based on a prompting strategy: 1) Using frequency masking as prompts to infer the embedding representation of the target series with missing frequency bands in the embedding space, and 2) Using the target series as prompts to infer its frequency masking embedding. In this way, FEI enables continuous semantic relationship modeling for time series. Experiments on 8 widely used time series datasets for classification and regression tasks, using linear evaluation and end-to-end fine-tuning, show that FEI significantly outperforms existing contrastive-based methods in terms of generalization. This study provides new insights into self-supervised representation learning for time series. The code is available at https://github.com/USTBInnovationPark/Frequency-masked-Embedding-Inference.

This ...

This paper has been accepted by AAAI-2025 main track

AverageLinear: Enhance Long-Term Time series forcasting with simple averaging 2024-12-30
Show

Long-term time series analysis aims to forecast long-term trends by examining changes over past and future periods. The intricacy of time series data poses significant challenges for modeling. Models based on the Transformer architecture, through the application of attention mechanisms to channels and sequences, have demonstrated notable performance advantages. In contrast, methods based on convolutional neural networks or linear models often struggle to effectively handle scenarios with large number of channels. However, our research reveals that the attention mechanism is not the core component responsible for performance enhancement. We have designed an exceedingly simple linear structure AverageLinear. By employing straightforward channel embedding and averaging operations, this model can effectively capture correlations between channels while maintaining a lightweight architecture. Experimentss on real-world datasets shows that AverageLinear matches or even surpasses state-of-the-art Transformer-based structures in performance. This indicates that using purely linear structures can also endow models with robust predictive power.

Econometric Analysis of Pandemic Disruption and Recovery Trajectory in the U.S. Rail Freight Industry 2024-12-30
Show

To measure the impacts on U.S. rail and intermodal freight by economic disruptions of the 2007-09 Great Recession and the COVID-19 pandemic, this paper uses time series analysis with the AutoRegressive Integrated Moving Average (ARIMA) family of models and covariates to model intermodal and commodity-specific rail freight volumes based on pre-disruption data. A framework to construct scenarios and select parameters and variables is demonstrated. By comparing actual freight volumes during the disruptions against three counterfactual scenarios, Trend Continuation, Covariate-adapted Trend Continuation, and Full Covariate-adapted Prediction, the characteristics and differences in magnitude and timing between the two disruptions and their effects across nine freight components are examined. Results show the disruption impacts differ from measurement by simple comparison with pre-disruption levels or year-on-year comparison depending on the structural trend and seasonal pattern. Recovery Pace Plots are introduced to support comparison in recovery speeds across freight components. Accounting for economic variables helps improve model fitness. It also enables evaluation of the change in association between freight volumes and covariates, where intermodal freight was found to respond more slowly during the pandemic, potentially due to supply constraint.

38 pa...

38 pages, 19 figures. A previous version was presented at the 101st Transportation Research Board Annual Meeting, Washington, D.C. in 2022

Converting Time Series Data to Numeric Representations Using Alphabetic Mapping and k-mer strategy 2024-12-29
Show

In the realm of data analysis and bioinformatics, representing time series data in a manner akin to biological sequences offers a novel approach to leverage sequence analysis techniques. Transforming time series signals into molecular sequence-type representations allows us to enhance pattern recognition by applying sophisticated sequence analysis techniques (e.g. $k$-mers based representation) developed in bioinformatics, uncovering hidden patterns and relationships in complex, non-linear time series data. This paper proposes a method to transform time series signals into biological/molecular sequence-type representations using a unique alphabetic mapping technique. By generating 26 ranges corresponding to the 26 letters of the English alphabet, each value within the time series is mapped to a specific character based on its range. This conversion facilitates the application of sequence analysis algorithms, typically used in bioinformatics, to analyze time series data. We demonstrate the effectiveness of this approach by converting real-world time series signals into character sequences and performing sequence classification. The resulting sequences can be utilized for various sequence-based analysis techniques, offering a new perspective on time series data representation and analysis.

Assessing the Optimistic Bias in the Natural Inflow Forecasts: A Call for Model Monitoring in Brazil 2024-12-29
Show

Hydroelectricity accounted for roughly 66% of the total generation in Brazil in 2023 and addressed most of the intermittency of wind and solar generation. Thus, one of the most important steps in the operation planning of this country is the forecast of the natural inflow energy (NIE) time series, an approximation of the energetic value of the water inflows. To manage water resources over time, the Brazilian system operator performs long-term forecasts for the NIE to assess the water values through long-term hydrothermal planning models, which are then used to define the short-term merit order in day-ahead scheduling. Therefore, monitoring optimistic bias in NIE forecasts is crucial to prevent an optimistic view of future system conditions and subsequent riskier storage policies. In this article, we investigate and showcase strong evidence of an optimistic bias in the official NIE forecasts, with predicted values consistently exceeding the observations over the past 12 years in the two main subsystems (Southeast and Northeast). Rolling window out-of-sample tests conducted with real data demonstrate that the official forecast model exhibits a statistically significant bias of 6%, 13%, 18%, and 23% for 1, 6, 12, and 24 steps ahead in the Southeast subsystem, and 19%, 57%, 80%, and 108% in the Northeast.

Bridging the Gap: A Decade Review of Time-Series Clustering Methods 2024-12-29
Show

Time series, as one of the most fundamental representations of sequential data, has been extensively studied across diverse disciplines, including computer science, biology, geology, astronomy, and environmental sciences. The advent of advanced sensing, storage, and networking technologies has resulted in high-dimensional time-series data, however, posing significant challenges for analyzing latent structures over extended temporal scales. Time-series clustering, an established unsupervised learning strategy that groups similar time series together, helps unveil hidden patterns in these complex datasets. In this survey, we trace the evolution of time-series clustering methods from classical approaches to recent advances in neural networks. While previous surveys have focused on specific methodological categories, we bridge the gap between traditional clustering methods and emerging deep learning-based algorithms, presenting a comprehensive, unified taxonomy for this research area. This survey highlights key developments and provides insights to guide future research in time-series clustering.

A Survey on Time-Series Distance Measures 2024-12-29
Show

Distance measures have been recognized as one of the fundamental building blocks in time-series analysis tasks, e.g., querying, indexing, classification, clustering, anomaly detection, and similarity search. The vast proliferation of time-series data across a wide range of fields has increased the relevance of evaluating the effectiveness and efficiency of these distance measures. To provide a comprehensive view of this field, this work considers over 100 state-of-the-art distance measures, classified into 7 categories: lock-step measures, sliding measures, elastic measures, kernel measures, feature-based measures, model-based measures, and embedding measures. Beyond providing comprehensive mathematical frameworks, this work also delves into the distinctions and applications across these categories for both univariate and multivariate cases. By providing comprehensive collections and insights, this study paves the way for the future development of innovative time-series distance measures.

Dive into Time-Series Anomaly Detection: A Decade Review 2024-12-29
Show

Recent advances in data collection technology, accompanied by the ever-rising volume and velocity of streaming data, underscore the vital need for time series analytics. In this regard, time-series anomaly detection has been an important activity, entailing various applications in fields such as cyber security, financial markets, law enforcement, and health care. While traditional literature on anomaly detection is centered on statistical measures, the increasing number of machine learning algorithms in recent years call for a structured, general characterization of the research methods for time-series anomaly detection. This survey groups and summarizes anomaly detection existing solutions under a process-centric taxonomy in the time series context. In addition to giving an original categorization of anomaly detection methods, we also perform a meta-analysis of the literature and outline general trends in time-series anomaly detection research.

"Generative Models for Financial Time Series Data: Enhancing Signal-to-Noise Ratio and Addressing Data Scarcity in A-Share Market 2024-12-29
Show

The financial industry is increasingly seeking robust methods to address the challenges posed by data scarcity and low signal-to-noise ratios, which limit the application of deep learning techniques in stock market analysis. This paper presents two innovative generative model-based approaches to synthesize stock data, specifically tailored for different scenarios within the A-share market in China. The first method, a sector-based synthesis approach, enhances the signal-to-noise ratio of stock data by classifying the characteristics of stocks from various sectors in China's A-share market. This method employs an Approximate Non-Local Total Variation algorithm to smooth the generated data, a bandpass filtering method based on Fourier Transform to eliminate noise, and Denoising Diffusion Implicit Models to accelerate sampling speed. The second method, a recursive stock data synthesis approach based on pattern recognition, is designed to synthesize data for stocks with short listing periods and limited comparable companies. It leverages pattern recognition techniques and Markov models to learn and generate variable-length stock sequences, while introducing a sub-time-level data augmentation method to alleviate data scarcity issues.We validate the effectiveness of these methods through extensive experiments on various datasets, including those from the main board, STAR Market, Growth Enterprise Market Board, Beijing Stock Exchange, NASDAQ, NYSE, and AMEX. The results demonstrate that our synthesized data not only improve the performance of predictive models but also enhance the signal-to-noise ratio of individual stock signals in price trading strategies. Furthermore, the introduction of sub-time-level data significantly improves the quality of synthesized data.

Injecting Explainability and Lightweight Design into Weakly Supervised Video Anomaly Detection Systems 2024-12-28
Show

Weakly Supervised Monitoring Anomaly Detection (WSMAD) utilizes weak supervision learning to identify anomalies, a critical task for smart city monitoring. However, existing multimodal approaches often fail to meet the real-time and interpretability requirements of edge devices due to their complexity. This paper presents TCVADS (Two-stage Cross-modal Video Anomaly Detection System), which leverages knowledge distillation and cross-modal contrastive learning to enable efficient, accurate, and interpretable anomaly detection on edge devices.TCVADS operates in two stages: coarse-grained rapid classification and fine-grained detailed analysis. In the first stage, TCVADS extracts features from video frames and inputs them into a time series analysis module, which acts as the teacher model. Insights are then transferred via knowledge distillation to a simplified convolutional network (student model) for binary classification. Upon detecting an anomaly, the second stage is triggered, employing a fine-grained multi-class classification model. This stage uses CLIP for cross-modal contrastive learning with text and images, enhancing interpretability and achieving refined classification through specially designed triplet textual relationships. Experimental results demonstrate that TCVADS significantly outperforms existing methods in model performance, detection efficiency, and interpretability, offering valuable contributions to smart city monitoring applications.

IEEE ...

IEEE TETC-CS (Under review)

Real-time Calibration Model for Low-cost Sensor in Fine-grained Time series 2024-12-28
Show

Precise measurements from sensors are crucial, but data is usually collected from low-cost, low-tech systems, which are often inaccurate. Thus, they require further calibrations. To that end, we first identify three requirements for effective calibration under practical low-tech sensor conditions. Based on the requirements, we develop a model called TESLA, Transformer for effective sensor calibration utilizing logarithmic-binned attention. TESLA uses a high-performance deep learning model, Transformers, to calibrate and capture non-linear components. At its core, it employs logarithmic binning to minimize attention complexity. TESLA achieves consistent real-time calibration, even with longer sequences and finer-grained time series in hardware-constrained systems. Experiments show that TESLA outperforms existing novel deep learning and newly crafted linear models in accuracy, calibration speed, and energy efficiency.

Accep...

Accepted by AAAI 2025

Deep Learning for Detecting and Early Predicting Chronic Obstructive Pulmonary Disease from Spirogram Time Series 2024-12-28
Show

Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung condition characterized by airflow obstruction. Current diagnostic methods primarily rely on identifying prominent features in spirometry (Volume-Flow time series) to detect COPD, but they are not adept at predicting future COPD risk based on subtle data patterns. In this study, we introduce a novel deep learning-based approach, DeepSpiro, aimed at the early prediction of future COPD risk. DeepSpiro consists of four key components: SpiroSmoother for stabilizing the Volume-Flow curve, SpiroEncoder for capturing volume variability-pattern through key patches of varying lengths, SpiroExplainer for integrating heterogeneous data and explaining predictions through volume attention, and SpiroPredictor for predicting the disease risk of undiagnosed high-risk patients based on key patch concavity, with prediction horizons of 1, 2, 3, 4, 5 years, or even longer. Evaluated on the UK Biobank dataset, DeepSpiro achieved an AUC of 0.8328 for COPD detection and demonstrated strong predictive performance for future COPD risk (p-value < 0.001). In summary, DeepSpiro can effectively predicts the long-term progression of the COPD disease.

Time-Series Foundation Model for Value-at-Risk Forecasting 2024-12-28
Show

This study is the first to explore the performance of a time-series foundation model for Value-at-Risk (VaR) forecasting. Foundation models, pre-trained on vast and varied datasets, can be used in a zero-shot setting with relatively minimal data or further improved through finetuning. We compare the performance of Google's model, called TimesFM, against conventional parametric and non-parametric models, including GARCH, Generalized Autoregressive Score (GAS), and empirical quantile estimates, using daily returns from the S&P 100 index and its constituents over 19 years. Our backtesting results indicate that in terms of the actual-over-expected ratio, the fine-tuned TimesFM model consistently outperforms traditional methods. Regarding the quantile score loss function, it achieves performance comparable to the best econometric approach, the GAS model. Overall, the foundation model is either the best or among the top performers in forecasting VaR across the 0.01, 0.025, 0.05, and 0.1 VaR levels. Fine-tuning significantly improves accuracy, indicating that zero-shot use is not optimal for VaR forecasting.

Forecasting Malaria in Indian States: A Time Series Approach with R Shiny Integration 2024-12-28
Show

Malaria remains a significant public health challenge in many regions, necessitating robust predictive models to aid in its management and prevention. This study focuses on developing and evaluating time series models for forecasting malaria cases across eight Indian states: Jharkhand, Chhattisgarh, Maharashtra, Meghalaya, Mizoram, Odisha, Tripura, and Uttar Pradesh. We employed various modeling approaches, including polynomial regression with seasonal components, log-transformed polynomial regression, lagged difference models, and ARIMA models, to capture the temporal dynamics of malaria incidence. Comprehensive model fitting, residual analysis, and performance evaluation using metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) indicated that the log-transformed polynomial regression model consistently outperformed other models in terms of accuracy and robustness across all states. Rolling forecast validation further confirmed the superior predictive capability of the log-transformed model over time. Additionally, an interactive R Shiny tool was developed to facilitate the use of these predictive models by researchers and public health officials. This tool allows users to input data, select modeling approaches, and visualize predictions and performance metrics, providing a practical tool for real-time malaria forecasting and decision-making support. Our findings highlight the critical role of appropriate modeling techniques in malaria prediction and offer valuable resources for enhancing malaria surveillance and response efforts.

18 pages
Enhancing Marine Debris Acoustic Monitoring by Optical Flow-Based Motion Vector Analysis 2024-12-28
Show

With the development of coastal construction, a large amount of human-generated waste, particularly plastic debris, is continuously entering the ocean, posing a severe threat to marine ecosystems. The key to effectively addressing plastic pollution lies in the ability to autonomously monitor such debris. Currently, marine debris monitoring primarily relies on optical sensors, but these methods are limited in their applicability to underwater and seafloor areas due to low-visibility constraints. The acoustic camera, also known as high-resolution forward-looking sonar (FLS), has demonstrated considerable potential in the autonomous monitoring of marine debris, as they are unaffected by water turbidity and dark environments. The appearance of targets in sonar images changes with variations in the imaging viewpoint, while challenges such as low signal-to-noise ratio, weak textures, and imaging distortions in sonar imagery present significant obstacles to debris monitoring based on prior class labels. This paper proposes an optical flow-based method for marine debris monitoring, aiming to fully utilize the time series information captured by the acoustic camera to enhance the performance of marine debris monitoring without relying on prior category labels of the targets. The proposed method was validated through experiments conducted in a circulating water tank, demonstrating its feasibility and robustness. This approach holds promise for providing novel insights into the spatial and temporal distribution of debris.

8 pages, conference
Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities 2024-12-28
Show

Large language models (LLMs) have been applied in many fields and have developed rapidly in recent years. As a classic machine learning task, time series forecasting has recently been boosted by LLMs. Recent works treat large language models as \emph{zero-shot} time series reasoners without further fine-tuning, which achieves remarkable performance. However, there are some unexplored research problems when applying LLMs for time series forecasting under the zero-shot setting. For instance, the LLMs' preferences for the input time series are less understood. In this paper, by comparing LLMs with traditional time series forecasting models, we observe many interesting properties of LLMs in the context of time series forecasting. First, our study shows that LLMs perform well in predicting time series with clear patterns and trends, but face challenges with datasets lacking periodicity. This observation can be explained by the ability of LLMs to recognize the underlying period within datasets, which is supported by our experiments. In addition, the input strategy is investigated, and it is found that incorporating external knowledge and adopting natural language paraphrases substantially improve the predictive performance of LLMs for time series. Overall, our study contributes insight into LLMs' advantages and limitations in time series forecasting under different conditions.

Accep...

Accepted by SIGKDD Explorations Newsletter

Hidformer: Transformer-Style Neural Network in Stock Price Forecasting 2024-12-27
Show

This paper investigates the application of Transformer-based neural networks to stock price forecasting, with a special focus on the intersection of machine learning techniques and financial market analysis. The evolution of Transformer models, from their inception to their adaptation for time series analysis in financial contexts, is reviewed and discussed. Central to our study is the exploration of the Hidformer model, which is currently recognized for its promising performance in time series prediction. The primary aim of this paper is to determine whether Hidformer will also prove itself in the task of stock price prediction. This slightly modified model serves as the framework for our experiments, integrating the principles of technical analysis with advanced machine learning concepts to enhance stock price prediction accuracy. We conduct an evaluation of the Hidformer model's performance, using a set of criteria to determine its efficacy. Our findings offer additional insights into the practical application of Transformer architectures in financial time series forecasting, highlighting their potential to improve algorithmic trading strategies, including human decision making.

12 pa...

12 pages, 6 figures, 4 tables

Surrogate Modeling for Explainable Predictive Time Series Corrections 2024-12-27
Show

We introduce a local surrogate approach for explainable time-series forecasting. An initially non-interpretable predictive model to improve the forecast of a classical time-series 'base model' is used. 'Explainability' of the correction is provided by fitting the base model again to the data from which the error prediction is removed (subtracted), yielding a difference in the model parameters which can be interpreted. We provide illustrative examples to demonstrate the potential of the method to discover and explain underlying patterns in the data.

Direct estimates of irreversibility from time series 2024-12-27
Show

The arrow of time can be quantified through the Kullback-Leibler divergence ($D_{KL}$) between the distributions of forward and reverse trajectories in a system. Many approaches to estimate this rely on specific models, but the use of incorrect models can introduce uncontrolled errors. Here, we describe a model-free method that uses trajectory data directly to estimate the evidence for irreversibility over finite windows of time. To do this we build on previous work to identify and correct for errors that arise from limited sample size. Importantly, our approach accurately recovers $D_{KL} = 0$ in systems that adhere to detailed balance, and the correct nonzero $D_{KL}$ for data generated by well understood models of nonequilibrium systems. We apply our method to trajectories of neural activity in the retina as it responds to naturalistic inputs, and find evidence of irreversibility in single neurons, emphasizing the non-Markovian character of these data. These results open new avenues for investigating how the brain represents the arrow of time.

Generative Pretrained Embedding and Hierarchical Irregular Time Series Representation for Daily Living Activity Recognition 2024-12-27
Show

Within the evolving landscape of smart homes, the precise recognition of daily living activities using ambient sensor data stands paramount. This paper not only aims to bolster existing algorithms by evaluating two distinct pretrained embeddings suited for ambient sensor activations but also introduces a novel hierarchical architecture. We delve into an architecture anchored on Transformer Decoder-based pre-trained embeddings, reminiscent of the GPT design, and contrast it with the previously established state-of-the-art (SOTA) ELMo embeddings for ambient sensors. Our proposed hierarchical structure leverages the strengths of each pre-trained embedding, enabling the discernment of activity dependencies and sequence order, thereby enhancing classification precision. To further refine recognition, we incorporate into our proposed architecture an hour-of-the-day embedding. Empirical evaluations underscore the preeminence of the Transformer Decoder embedding in classification endeavors. Additionally, our innovative hierarchical design significantly bolsters the efficacy of both pre-trained embeddings, notably in capturing inter-activity nuances. The integration of temporal aspects subtly but distinctively augments classification, especially for time-sensitive activities. In conclusion, our GPT-inspired hierarchical approach, infused with temporal insights, outshines the SOTA ELMo benchmark.

Learning to Forget: Bayesian Time Series Forecasting using Recurrent Sparse Spectrum Signature Gaussian Processes 2024-12-27
Show

The signature kernel is a kernel between time series of arbitrary length and comes with strong theoretical guarantees from stochastic analysis. It has found applications in machine learning such as covariance functions for Gaussian processes. A strength of the underlying signature features is that they provide a structured global description of a time series. However, this property can quickly become a curse when local information is essential and forgetting is required; so far this has only been addressed with ad-hoc methods such as slicing the time series into subsegments. To overcome this, we propose a principled, data-driven approach by introducing a novel forgetting mechanism for signatures. This allows the model to dynamically adapt its context length to focus on more recent information. To achieve this, we revisit the recently introduced Random Fourier Signature Features, and develop Random Fourier Decayed Signature Features (RFDSF) with Gaussian processes (GPs). This results in a Bayesian time series forecasting algorithm with variational inference, that offers a scalable probabilistic algorithm that processes and transforms a time series into a joint predictive distribution over time steps in one pass using recurrence. For example, processing a sequence of length $10^4$ steps in $\approx 10^{-2}$ seconds and in $&lt; 1\text{GB}$ of GPU memory. We demonstrate that it outperforms other GP-based alternatives and competes with state-of-the-art probabilistic time series forecasting algorithms.

A data driven approach to classify descriptors based on their efficiency in translating noisy trajectories into physically-relevant information 2024-12-27
Show

Reconstructing the physical complexity of many-body dynamical systems can be challenging. Starting from the trajectories of their constitutive units (raw data), typical approaches require selecting appropriate descriptors to convert them into time-series, which are then analyzed to extract interpretable information. However, identifying the most effective descriptor is often non-trivial. Here, we report a data-driven approach to compare the efficiency of various descriptors in extracting information from noisy trajectories and translating it into physically relevant insights. As a prototypical system with non-trivial internal complexity, we analyze molecular dynamics trajectories of an atomistic system where ice and water coexist in equilibrium near the solid/liquid transition temperature. We compare general and specific descriptors often used in aqueous systems: number of neighbors, molecular velocities, Smooth Overlap of Atomic Positions (SOAP), Local Environments and Neighbors Shuffling (LENS), Orientational Tetrahedral Order, and distance from the fifth neighbor ($d_5$). Using Onion Clustering -- an efficient unsupervised method for single-point time-series analysis -- we assess the maximum extractable information for each descriptor and rank them via a high-dimensional metric. Our results show that advanced descriptors like SOAP and LENS outperform classical ones due to higher signal-to-noise ratios. Nonetheless, even simple descriptors can rival or exceed advanced ones after local signal denoising. For example, $d_5$, initially among the weakest, becomes the most effective at resolving the system's non-local dynamical complexity after denoising. This work highlights the critical role of noise in information extraction from molecular trajectories and offers a data-driven approach to identify optimal descriptors for systems with characteristic internal complexity.

19 pa...

19 pages, 5 figures + 3 in supporting information (at the bottom of the manuscript)

Developing Cryptocurrency Trading Strategy Based on Autoencoder-CNN-GANs Algorithms 2024-12-27
Show

This paper leverages machine learning algorithms to forecast and analyze financial time series. The process begins with a denoising autoencoder to filter out random noise fluctuations from the main contract price data. Then, one-dimensional convolution reduces the dimensionality of the filtered data and extracts key information. The filtered and dimensionality-reduced price data is fed into a GANs network, and its output serve as input of a fully connected network. Through cross-validation, a model is trained to capture features that precede large price fluctuations. The model predicts the likelihood and direction of significant price changes in real-time price sequences, placing trades at moments of high prediction accuracy. Empirical results demonstrate that using autoencoders and convolution to filter and denoise financial data, combined with GANs, achieves a certain level of predictive performance, validating the capabilities of machine learning algorithms to discover underlying patterns in financial sequences. Keywords - CNN;GANs; Cryptocurrency; Prediction.

The p...

The paper was accepted by 2024 4th International Conference on Artificial Intelligence, Robotics, and Communication(ICAIRC 2024)

A Time Series Analysis of Assertions in the Linux Kernel 2024-12-27
Show

Assertions are a classical and typical software development technique. These are extensively used also in operating systems and their kernels, including the Linux kernel. The paper patches a gap in existing knowledge by empirically examining the longitudinal evolution of assertion use in the Linux kernel. According to the results, the use of assertions that cause a kernel panic has slightly but not substantially decreased from the kernel's third to the sixth release series. At the same time, however, the use of softer assertion variants has increased; these do not cause a panic by default but instead produce warnings. With these time series results, the paper contributes to the existing but limited empirical knowledge base about operating system kernels and their long-term evolution.

Submitted
Revisiting PCA for time series reduction in temporal dimension 2024-12-27
Show

Revisiting PCA for Time Series Reduction in Temporal Dimension; Jiaxin Gao, Wenbo Hu, Yuntian Chen; Deep learning has significantly advanced time series analysis (TSA), enabling the extraction of complex patterns for tasks like classification, forecasting, and regression. Although dimensionality reduction has traditionally focused on the variable space-achieving notable success in minimizing data redundancy and computational complexity-less attention has been paid to reducing the temporal dimension. In this study, we revisit Principal Component Analysis (PCA), a classical dimensionality reduction technique, to explore its utility in temporal dimension reduction for time series data. It is generally thought that applying PCA to the temporal dimension would disrupt temporal dependencies, leading to limited exploration in this area. However, our theoretical analysis and extensive experiments demonstrate that applying PCA to sliding series windows not only maintains model performance, but also enhances computational efficiency. In auto-regressive forecasting, the temporal structure is partially preserved through windowing, and PCA is applied within these windows to denoise the time series while retaining their statistical information. By preprocessing time-series data with PCA, we reduce the temporal dimensionality before feeding it into TSA models such as Linear, Transformer, CNN, and RNN architectures. This approach accelerates training and inference and reduces resource consumption. Notably, PCA improves Informer training and inference speed by up to 40% and decreases GPU memory usage of TimesNet by 30%, without sacrificing model accuracy. Comparative analysis against other reduction methods further highlights the effectiveness of PCA in improving the efficiency of TSA models.

13 pa...

13 pages, 5 figures, 7 tables

Towards General Industrial Intelligence: A Survey of Continual Large Models in Industrial IoT 2024-12-27
Show

Industrial AI is transitioning from traditional deep learning models to large-scale transformer-based architectures, with the Industrial Internet of Things (IIoT) playing a pivotal role. IIoT evolves from a simple data pipeline to an intelligent infrastructure, enabling and enhancing these advanced AI systems. This survey explores the integration of IIoT with large models (LMs) and their potential applications in industrial environments. We focus on four primary types of industrial LMs: language-based, vision-based, time-series, and multimodal models. The lifecycle of LMs is segmented into four critical phases: data foundation, model training, model connectivity, and continuous evolution. First, we analyze how IIoT provides abundant and diverse data resources, supporting the training and fine-tuning of LMs. Second, we discuss how IIoT offers an efficient training infrastructure in low-latency and bandwidth-optimized environments. Third, we highlight the deployment advantages of LMs within IIoT, emphasizing IIoT's role as a connectivity nexus fostering emergent intelligence through modular design, dynamic routing, and model merging to enhance system scalability and adaptability. Finally, we demonstrate how IIoT supports continual learning mechanisms, enabling LMs to adapt to dynamic industrial conditions and ensure long-term effectiveness. This paper underscores IIoT's critical role in the evolution of industrial intelligence with large models, offering a theoretical framework and actionable insights for future research.

Solving High-dimensional Inverse Problems Using Amortized Likelihood-free Inference with Noisy and Incomplete Data 2024-12-26
Show

We present a likelihood-free probabilistic inversion method based on normalizing flows for high-dimensional inverse problems. The proposed method is composed of two complementary networks: a summary network for data compression and an inference network for parameter estimation. The summary network encodes raw observations into a fixed-size vector of summary features, while the inference network generates samples of the approximate posterior distribution of the model parameters based on these summary features. The posterior samples are produced in a deep generative fashion by sampling from a latent Gaussian distribution and passing these samples through an invertible transformation. We construct this invertible transformation by sequentially alternating conditional invertible neural network and conditional neural spline flow layers. The summary and inference networks are trained simultaneously. We apply the proposed method to an inversion problem in groundwater hydrology to estimate the posterior distribution of the log-conductivity field conditioned on spatially sparse time-series observations of the system's hydraulic head responses.The conductivity field is represented with 706 degrees of freedom in the considered problem.The comparison with the likelihood-based iterative ensemble smoother PEST-IES method demonstrates that the proposed method accurately estimates the parameter posterior distribution and the observations' predictive posterior distribution at a fraction of the inference time of PEST-IES.

Time Series Foundational Models: Their Role in Anomaly Detection and Prediction 2024-12-26
Show

Time series foundational models (TSFM) have gained prominence in time series forecasting, promising state-of-the-art performance across various applications. However, their application in anomaly detection and prediction remains underexplored, with growing concerns regarding their black-box nature, lack of interpretability and applicability. This paper critically evaluates the efficacy of TSFM in anomaly detection and prediction tasks. We systematically analyze TSFM across multiple datasets, including those characterized by the absence of discernible patterns, trends and seasonality. Our analysis shows that while TSFMs can be extended for anomaly detection and prediction, traditional statistical and deep learning models often match or outperform TSFM in these tasks. Additionally, TSFMs require high computational resources but fail to capture sequential dependencies effectively or improve performance in few-shot or zero-shot scenarios. \noindent The preprocessed datasets, codes to reproduce the results and supplementary materials are available at https://github.com/smtmnfg/TSFM.

12 pa...

12 pages, 6 figures, 5 tables. Accepted at AAAI2025 Anomaly Detection in Scientific Domains Workshop

Network double autoregression 2024-12-26
Show

Modeling high-dimensional time series with simple structures is a challenging problem. This paper proposes a network double autoregression (NDAR) model, which combines the advantages of network structure and the double autoregression (DAR) model, to handle high-dimensional, conditionally heteroscedastic, and network-structured data within a simple framework. The parameters of the model are estimated using quasi-maximum likelihood estimation, and the asymptotic properties of the estimators are derived. The selection of the model's lag order will be based on the Bayesian information criterion. Finite-sample simulations show that the proposed model performs well even with moderate time dimensions and network sizes. Finally, the model is applied to analyze three different categories of stock data.

Adopting Trustworthy AI for Sleep Disorder Prediction: Deep Time Series Analysis with Temporal Attention Mechanism and Counterfactual Explanations 2024-12-25
Show

Sleep disorders have a major impact on both lifestyle and health. Effective sleep disorder prediction from lifestyle and physiological data can provide essential details for early intervention. This research utilizes three deep time series models and facilitates them with explainability approaches for sleep disorder prediction. Specifically, our approach adopts Temporal Convolutional Networks (TCN), Long Short-Term Memory (LSTM) for time series data analysis, and Temporal Fusion Transformer model (TFT). Meanwhile, the temporal attention mechanism and counterfactual explanation with SHapley Additive exPlanations (SHAP) approach are employed to ensure dependable, accurate, and interpretable predictions. Finally, using a large dataset of sleep health measures, our evaluation demonstrates the effect of our method in predicting sleep disorders.

Stationary Processes, Wiener-Granger Causality, and Matrix Spectral Factorization 2024-12-25
Show

Granger causality has become an indispensable tool for analyzing causal relationships between time series. In this paper, we provide a detailed overview of its mathematical foundations, trace its historical development, and explore how recent computational advancements can enhance its application in various fields. We will not hesitate to present the proofs in full if they are simple and transparent. For more complex theorems on which we rely, we will provide supporting citations. We also discuss potential future directions for the method, particularly in the context of largescale data analysis.

9 pages
Unlocking the Power of Patch: Patch-Based MLP for Long-Term Time Series Forecasting 2024-12-25
Show

Recent studies have attempted to refine the Transformer architecture to demonstrate its effectiveness in Long-Term Time Series Forecasting (LTSF) tasks. Despite surpassing many linear forecasting models with ever-improving performance, we remain skeptical of Transformers as a solution for LTSF. We attribute the effectiveness of these models largely to the adopted Patch mechanism, which enhances sequence locality to an extent yet fails to fully address the loss of temporal information inherent to the permutation-invariant self-attention mechanism. Further investigation suggests that simple linear layers augmented with the Patch mechanism may outperform complex Transformer-based LTSF models. Moreover, diverging from models that use channel independence, our research underscores the importance of cross-variable interactions in enhancing the performance of multivariate time series forecasting. The interaction information between variables is highly valuable but has been misapplied in past studies, leading to suboptimal cross-variable models. Based on these insights, we propose a novel and simple Patch-based MLP (PatchMLP) for LTSF tasks. Specifically, we employ simple moving averages to extract smooth components and noise-containing residuals from time series data, engaging in semantic information interchange through channel mixing and specializing in random noise with channel independence processing. The PatchMLP model consistently achieves state-of-the-art results on several real-world datasets. We hope this surprising finding will spur new research directions in the LTSF field and pave the way for more efficient and concise solutions.

Ister: Inverted Seasonal-Trend Decomposition Transformer for Explainable Multivariate Time Series Forecasting 2024-12-25
Show

In long-term time series forecasting, Transformer-based models have achieved great success, due to its ability to capture long-range dependencies. However, existing transformer-based methods face challenges in accurately identifying which variables play a pivotal role in the prediction process and tend to overemphasize noisy channels, thereby limiting the interpretability and practical effectiveness of the models. Besides, it faces scalability issues due to quadratic computational complexity of self-attention. In this paper, we propose a new model named Inverted Seasonal-Trend Decomposition Transformer (Ister), which addresses these challenges in long-term multivariate time series forecasting by designing an improved Transformer-based structure. Ister firstly decomposes original time series into seasonal and trend components. Then we propose a new Dot-attention mechanism to process the seasonal component, which improves both accuracy, computation complexity and interpretability. Upon completion of the training phase, it allows users to intuitively visualize the significance of each feature in the overall prediction. We conduct comprehensive experiments, and the results show that Ister achieves state-of-the-art (SOTA) performance on multiple datasets, surpassing existing models in long-term prediction tasks.

Predicting Time Series of Networked Dynamical Systems without Knowing Topology 2024-12-25
Show

Many real-world complex systems, such as epidemic spreading networks and ecosystems, can be modeled as networked dynamical systems that produce multivariate time series. Learning the intrinsic dynamics from observational data is pivotal for forecasting system behaviors and making informed decisions. However, existing methods for modeling networked time series often assume known topologies, whereas real-world networks are typically incomplete or inaccurate, with missing or spurious links that hinder precise predictions. Moreover, while networked time series often originate from diverse topologies, the ability of models to generalize across topologies has not been systematically evaluated. To address these gaps, we propose a novel framework for learning network dynamics directly from observed time-series data, when prior knowledge of graph topology or governing dynamical equations is absent. Our approach leverages continuous graph neural networks with an attention mechanism to construct a latent topology, enabling accurate reconstruction of future trajectories for network states. Extensive experiments on real and synthetic networks demonstrate that our model not only captures dynamics effectively without topology knowledge but also generalizes to unseen time series originating from diverse topologies.

SIGMA: Selective Gated Mamba for Sequential Recommendation 2024-12-24
Show

In various domains, Sequential Recommender Systems (SRS) have become essential due to their superior capability to discern intricate user preferences. Typically, SRS utilize transformer-based architectures to forecast the subsequent item within a sequence. Nevertheless, the quadratic computational complexity inherent in these models often leads to inefficiencies, hindering the achievement of real-time recommendations. Mamba, a recent advancement, has exhibited exceptional performance in time series prediction, significantly enhancing both efficiency and accuracy. However, integrating Mamba directly into SRS poses several challenges. Its inherently unidirectional nature may constrain the model's capacity to capture the full context of user-item interactions, while its instability in state estimation can compromise its ability to detect short-term patterns within interaction sequences. To overcome these issues, we introduce a new framework named Selective Gated Mamba (SIGMA) for Sequential Recommendation. This framework leverages a Partially Flipped Mamba (PF-Mamba) to construct a bidirectional architecture specifically tailored to improve contextual modeling. Additionally, an input-sensitive Dense Selective Gate (DS Gate) is employed to optimize directional weights and enhance the processing of sequential information in PF-Mamba. For short sequence modeling, we have also developed a Feature Extract GRU (FE-GRU) to efficiently capture short-term dependencies. Empirical results indicate that SIGMA outperforms current models on five real-world datasets. Our implementation code is available at https://github.com/ziwliu-cityu/SIMGA to ease reproducibility.

Subsampling, aligning, and averaging to find circular coordinates in recurrent time series 2024-12-24
Show

We introduce a new algorithm for finding robust circular coordinates on data that is expected to exhibit recurrence, such as that which appears in neuronal recordings of C. elegans. Techniques exist to create circular coordinates on a simplicial complex from a dimension 1 cohomology class, and these can be applied to the Rips complex of a dataset when it has a prominent class in its dimension 1 cohomology. However, it is known this approach is extremely sensitive to uneven sampling density. Our algorithm comes with a new method to correct for uneven sampling density, adapting our prior work on averaging coordinates in manifold learning. We use rejection sampling to correct for inhomogeneous sampling and then apply Procrustes matching to align and average the subsamples. In addition to providing a more robust coordinate than other approaches, this subsampling and averaging approach has better efficiency. We validate our technique on both synthetic data sets and neuronal activity recordings. Our results reveal a topological model of neuronal trajectories for C. elegans that is constructed from loops in which different regions of the brain state space can be mapped to specific and interpretable macroscopic behaviors in the worm.

From CNN to CNN + RNN: Adapting Visualization Techniques for Time-Series Anomaly Detection 2024-12-24
Show

Deep neural networks are highly effective in solving complex problems but are often viewed as "black boxes," limiting their adoption in contexts where transparency and explainability are essential. This lack of visibility raises ethical and legal concerns, particularly in critical areas like security, where automated decisions can have significant consequences. The General Data Protection Regulation (GDPR) underscores the importance of justifying these decisions. In this work, we explore visualization techniques to improve the understanding of anomaly detection models based on convolutional recurrent neural networks (CNN + RNN) with a TimeDistributed layer. Our model combines VGG19 for convolutional feature extraction and a GRU layer for sequential analysis of real-time video data. While suitable for temporal data, this structure complicates gradient propagation, as sequence elements are processed independently, dissociating temporal information. We adapt visualization techniques such as saliency maps and Grad-CAM to address these challenges. This article highlights the difficulties in visually interpreting video-based models and demonstrates how techniques for static images can be adapted to recurrent architectures, offering a transitional solution in the absence of dedicated methods.

SCKF-LSTM Based Trajectory Tracking for Electricity-Gas Integrated Energy System 2024-12-24
Show

This paper introduces a novel approach for tracking the dynamic trajectories of integrated natural gas and power systems, leveraging a Kalman filter-based structure. To predict the states of the system, the Holt's exponential smoothing techniques and nonlinear dynamic equations of gas pipelines are applied to establish the power and gas system equations, respectively. The square-root cubature Kalman filter algorithm is utilized to address the numerical challenges posed by the strongly nonlinear system equations. The boundary conditions in the gas system include the flow balances at sink nodes, and the mass flow rates of loads have to be predicted at each computation step. For the prediction of load mass flows, the long short-term memory network is employed, known for its effectiveness in time series prediction. Consequently, a combined method based on the square-root cubature Kalman filter and the long short-term memory network is proposed for tracking integrated gas and power systems. To evaluate the tracking performances of the proposed method, the IEEE-39 bus power system and GasLib-40 node gas system are used to form the testing system. Simulation results demonstrate high precision in tracking the dynamic states of power and gas systems. Two indexes are introduced for a numerical analysis of the tracking results, indicating that the accuracy of this method surpasses that of traditional measurements.

Accep...

Accepted by IEEE Transactions on Industrial Informatics

Hierarchical Classification Auxiliary Network for Time Series Forecasting 2024-12-24
Show

Deep learning has significantly advanced time series forecasting through its powerful capacity to capture sequence relationships. However, training these models with the Mean Square Error (MSE) loss often results in over-smooth predictions, making it challenging to handle the complexity and learn high-entropy features from time series data with high variability and unpredictability. In this work, we introduce a novel approach by tokenizing time series values to train forecasting models via cross-entropy loss, while considering the continuous nature of time series data. Specifically, we propose a Hierarchical Classification Auxiliary Network, HCAN, a general model-agnostic component that can be integrated with any forecasting model. HCAN is based on a Hierarchy-Aware Attention module that integrates multi-granularity high-entropy features at different hierarchy levels. At each level, we assign a class label for timesteps to train an Uncertainty-Aware Classifier. This classifier mitigates the over-confidence in softmax loss via evidence theory. We also implement a Hierarchical Consistency Loss to maintain prediction consistency across hierarchy levels. Extensive experiments integrating HCAN with state-of-the-art forecasting models demonstrate substantial improvements over baselines on several real-world datasets.

Zero-Shot Conditioning of Score-Based Diffusion Models by Neuro-Symbolic Constraints 2024-12-24
Show

Score-based diffusion models have emerged as effective approaches for both conditional and unconditional generation. Still conditional generation is based on either a specific training of a conditional model or classifier guidance, which requires training a noise-dependent classifier, even when a classifier for uncorrupted data is given. We propose a method that, given a pre-trained unconditional score-based generative model, samples from the conditional distribution under arbitrary logical constraints, without requiring additional training. Differently from other zero-shot techniques, that rather aim at generating valid conditional samples, our method is designed for approximating the true conditional distribution. Firstly, we show how to manipulate the learned score in order to sample from an un-normalized distribution conditional on a user-defined constraint. Then, we define a flexible and numerically stable neuro-symbolic framework for encoding soft logical constraints. Combining these two ingredients we obtain a general, but approximate, conditional sampling algorithm. We further developed effective heuristics aimed at improving the approximation. Finally, we show the effectiveness of our approach in approximating conditional distributions for various types of constraints and data: tabular data, images and time series.

Explainable AI for Multivariate Time Series Pattern Exploration: Latent Space Visual Analytics with Temporal Fusion Transformer and Variational Autoencoders in Power Grid Event Diagnosis 2024-12-24
Show

Detecting and analyzing complex patterns in multivariate time-series data is crucial for decision-making in urban and environmental system operations. However, challenges arise from the high dimensionality, intricate complexity, and interconnected nature of complex patterns, which hinder the understanding of their underlying physical processes. Existing AI methods often face limitations in interpretability, computational efficiency, and scalability, reducing their applicability in real-world scenarios. This paper proposes a novel visual analytics framework that integrates two generative AI models, Temporal Fusion Transformer (TFT) and Variational Autoencoders (VAEs), to reduce complex patterns into lower-dimensional latent spaces and visualize them in 2D using dimensionality reduction techniques such as PCA, t-SNE, and UMAP with DBSCAN. These visualizations, presented through coordinated and interactive views and tailored glyphs, enable intuitive exploration of complex multivariate temporal patterns, identifying patterns' similarities and uncover their potential correlations for a better interpretability of the AI outputs. The framework is demonstrated through a case study on power grid signal data, where it identifies multi-label grid event signatures, including faults and anomalies with diverse root causes. Additionally, novel metrics and visualizations are introduced to validate the models and evaluate the performance, efficiency, and consistency of latent maps generated by TFT and VAE under different configurations. These analyses provide actionable insights for model parameter tuning and reliability improvements. Comparative results highlight that TFT achieves shorter run times and superior scalability to diverse time-series data shapes compared to VAE. This work advances fault diagnosis in multivariate time series, fostering explainable AI to support critical system operations.

Neural Conformal Control for Time Series Forecasting 2024-12-24
Show

We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments. Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders in an end-to-end manner to further enhance adaptivity. Additionally, our model is designed to enhance the consistency of prediction intervals in different quantiles by integrating monotonicity constraints and leverages data from related tasks to boost few-shot learning performance. Using real-world datasets from epidemics, electric demand, weather, and others, we empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.

EF-LLM: Energy Forecasting LLM with AI-assisted Automation, Enhanced Sparse Prediction, Hallucination Detection 2024-12-24
Show

Accurate prediction helps to achieve supply-demand balance in energy systems, supporting decision-making and scheduling. Traditional models, lacking AI-assisted automation, rely on experts, incur high costs, and struggle with sparse data prediction. To address these challenges, we propose the Energy Forecasting Large Language Model (EF-LLM), which integrates domain knowledge and temporal data for time-series forecasting, supporting both pre-forecast operations and post-forecast decision-support. EF-LLM's human-AI interaction capabilities lower the entry barrier in forecasting tasks, reducing the need for extra expert involvement. To achieve this, we propose a continual learning approach with updatable LoRA and a multi-channel architecture for aligning heterogeneous multimodal data, enabling EF-LLM to continually learn heterogeneous multimodal knowledge. In addition, EF-LLM enables accurate predictions under sparse data conditions through its ability to process multimodal data. We propose Fusion Parameter-Efficient Fine-Tuning (F-PEFT) method to effectively leverage both time-series data and text for this purpose. EF-LLM is also the first energy-specific LLM to detect hallucinations and quantify their occurrence rate, achieved via multi-task learning, semantic similarity analysis, and ANOVA. We have achieved success in energy prediction scenarios for load, photovoltaic, and wind power forecast.

Time Series Feature Redundancy Paradox: An Empirical Study Based on Mortgage Default Prediction 2024-12-23
Show

With the widespread application of machine learning in financial risk management, conventional wisdom suggests that longer training periods and more feature variables contribute to improved model performance. This paper, focusing on mortgage default prediction, empirically discovers a phenomenon that contradicts traditional knowledge: in time series prediction, increased training data timespan and additional non-critical features actually lead to significant deterioration in prediction effectiveness. Using Fannie Mae's mortgage data, the study compares predictive performance across different time window lengths (2012-2022) and feature combinations, revealing that shorter time windows (such as single-year periods) paired with carefully selected key features yield superior prediction results. The experimental results indicate that extended time spans may introduce noise from historical data and outdated market patterns, while excessive non-critical features interfere with the model's learning of core default factors. This research not only challenges the traditional "more is better" approach in data modeling but also provides new insights and practical guidance for feature selection and time window optimization in financial risk prediction.

TNNGen: Automated Design of Neuromorphic Sensory Processing Units for Time-Series Clustering 2024-12-23
Show

Temporal Neural Networks (TNNs), a special class of spiking neural networks, draw inspiration from the neocortex in utilizing spike-timings for information processing. Recent works proposed a microarchitecture framework and custom macro suite for designing highly energy-efficient application-specific TNNs. These recent works rely on manual hardware design, a labor-intensive and time-consuming process. Further, there is no open-source functional simulation framework for TNNs. This paper introduces TNNGen, a pioneering effort towards the automated design of TNNs from PyTorch software models to post-layout netlists. TNNGen comprises a novel PyTorch functional simulator (for TNN modeling and application exploration) coupled with a Python-based hardware generator (for PyTorch-to-RTL and RTL-to-Layout conversions). Seven representative TNN designs for time-series signal clustering across diverse sensory modalities are simulated and their post-layout hardware complexity and design runtimes are assessed to demonstrate the effectiveness of TNNGen. We also highlight TNNGen's ability to accurately forecast silicon metrics without running hardware process flow.

Publi...

Published in IEEE Transactions on Circuits and Systems II: Express Briefs, May 2024

The FIX Benchmark: Extracting Features Interpretable to eXperts 2024-12-23
Show

Feature-based methods are commonly used to explain model predictions, but these methods often implicitly assume that interpretable features are readily available. However, this is often not the case for high-dimensional data, and it can be hard even for domain experts to mathematically specify which features are important. Can we instead automatically extract collections or groups of features that are aligned with expert knowledge? To address this gap, we present FIX (Features Interpretable to eXperts), a benchmark for measuring how well a collection of features aligns with expert knowledge. In collaboration with domain experts, we propose FIXScore, a unified expert alignment measure applicable to diverse real-world settings across cosmology, psychology, and medicine domains in vision, language, and time series data modalities. With FIXScore, we find that popular feature-based explanation methods have poor alignment with expert-specified knowledge, highlighting the need for new methods that can better identify features interpretable to experts.

VITRO: Vocabulary Inversion for Time-series Representation Optimization 2024-12-23
Show

Although LLMs have demonstrated remarkable capabilities in processing and generating textual data, their pre-trained vocabularies are ill-suited for capturing the nuanced temporal dynamics and patterns inherent in time series. The discrete, symbolic nature of natural language tokens, which these vocabularies are designed to represent, does not align well with the continuous, numerical nature of time series data. To address this fundamental limitation, we propose VITRO. Our method adapts textual inversion optimization from the vision-language domain in order to learn a new time series per-dataset vocabulary that bridges the gap between the discrete, semantic nature of natural language and the continuous, numerical nature of time series data. We show that learnable time series-specific pseudo-word embeddings represent time series data better than existing general language model vocabularies, with VITRO-enhanced methods achieving state-of-the-art performance in long-term forecasting across most datasets.

Accep...

Accepted to ICASSP 2025

On the Optimization of Singular Spectrum Analyses: A Pragmatic Approach 2024-12-23
Show

Singular Spectrum Analysis (SSA) occupies a prominent place in the real signal analysis toolkit alongside Fourier and Wavelet analysis. In addition to the two aforementioned analyses, SSA allows the separation of patterns directly from the data space into the data space, with data that need not be strictly stationary, continuous, or even normally sampled. In most cases, SSA relies on a combination of Hankel or Toeplitz matrices and Singular Value Decomposition (SVD). Like Fourier and Wavelet analysis, SSA has its limitations. The main bottleneck of the method can be summarized in three points. The first is the diagonalization of the Hankel/Toeplitz matrix, which can become a major problem from a memory and/or computational point of view if the time series to be analyzed is very long or heavily sampled. The second point concerns the size of the analysis window, typically denoted as 'L', which will affect the detection of patterns in the time series as well as the dimensions of the Hankel/Toeplitz matrix. Finally, the third point concerns pattern reconstruction: how to easily identify in the eigenvector/eigenvalue space which patterns should be grouped. We propose to address each of these issues by describing a hopefully effective approach that we have been developing for over 10 years and that has yielded good results in our research work.

28 pages, 11 figures
Ergodic Network Stochastic Differential Equations 2024-12-23
Show

We propose a novel framework for Network Stochastic Differential Equations (N-SDE), where each node in a network is governed by an SDE influenced by interactions with its neighbors. The evolution of each node is driven by the interplay of three key components: the node's intrinsic dynamics (\emph{momentum effect}), feedback from neighboring nodes (\emph{network effect}), and a \emph{stochastic volatility} term modeled by Brownian motion. Our primary objective is to estimate the parameters of the N-SDE system from high-frequency discrete-time observations. The motivation behind this model lies in its ability to analyze very high-dimensional time series by leveraging the inherent sparsity of the underlying network graph. We consider two distinct scenarios: \textit{i) known network structure}: the graph is fully specified, and we establish conditions under which the parameters can be identified, considering the quadratic growth of the parameter space with the number of edges. \textit{ii) unknown network structure}: the graph must be inferred from the data. For this, we develop an iterative procedure using adaptive Lasso, tailored to a specific subclass of N-SDE models. In this work, we assume the network graph is oriented, paving the way for novel applications of SDEs in causal inference, enabling the study of cause-effect relationships in dynamic systems. Through extensive simulation studies, we demonstrate the performance of our estimators across various graph topologies in high-dimensional settings. We also showcase the framework's applicability to real-world datasets, highlighting its potential for advancing the analysis of complex networked systems.

EasyTime: Time Series Forecasting Made Easy 2024-12-23
Show

Time series forecasting has important applications across diverse domains. EasyTime, the system we demonstrate, facilitates easy use of time-series forecasting methods by researchers and practitioners alike. First, EasyTime enables one-click evaluation, enabling researchers to evaluate new forecasting methods using the suite of diverse time series datasets collected in the preexisting time series forecasting benchmark (TFB). This is achieved by leveraging TFB's flexible and consistent evaluation pipeline. Second, when practitioners must perform forecasting on a new dataset, a nontrivial first step is often to find an appropriate forecasting method. EasyTime provides an Automated Ensemble module that combines the promising forecasting methods to yield superior forecasting accuracy compared to individual methods. Third, EasyTime offers a natural language Q&A module leveraging large language models. Given a question like "Which method is best for long term forecasting on time series with strong seasonality?", EasyTime converts the question into SQL queries on the database of results obtained by TFB and then returns an answer in natural language and charts. By demonstrating EasyTime, we intend to show how it is possible to simplify the use of time series forecasting and to offer better support for the development of new generations of time series forecasting methods.

Accepted by ICDE2025
Quantum Time-Series Learning with Evolutionary Algorithms 2024-12-23
Show

Variational quantum circuits have arisen as an important method in quantum computing. A crucial step of it is parameter optimization, which is typically tackled through gradient-descent techniques. We advantageously explore instead the use of evolutionary algorithms for such optimization, specifically for time-series forecasting. We perform a comparison, for diverse instances of real-world data, between gradient-descent parameter optimization and covariant-matrix adaptation evolutionary strategy. We observe that gradient descent becomes permanently trapped in local minima that have been avoided by evolutionary algorithms in all tested datasets, reaching up to a six-fold decrease in prediction error. Finally, the combined use of evolutionary and gradient-based techniques is explored, aiming at retaining advantages of both. The results are particularly applicable in scenarios sensitive to gains in accuracy.

7 pages, 2 figures
Are Self-Attentions Effective for Time Series Forecasting? 2024-12-23
Show

Time series forecasting is crucial for applications across multiple domains and various scenarios. Although Transformer models have dramatically advanced the landscape of forecasting, their effectiveness remains debated. Recent findings have indicated that simpler linear models might outperform complex Transformer-based approaches, highlighting the potential for more streamlined architectures. In this paper, we shift the focus from evaluating the overall Transformer architecture to specifically examining the effectiveness of self-attention for time series forecasting. To this end, we introduce a new architecture, Cross-Attention-only Time Series transformer (CATS), that rethinks the traditional Transformer framework by eliminating self-attention and leveraging cross-attention mechanisms instead. By establishing future horizon-dependent parameters as queries and enhanced parameter sharing, our model not only improves long-term forecasting accuracy but also reduces the number of parameters and memory usage. Extensive experiment across various datasets demonstrates that our model achieves superior performance with the lowest mean squared error and uses fewer parameters compared to existing models. The implementation of our model is available at: https://github.com/dongbeank/CATS.

Accep...

Accepted at NeurIPS 2024

Data-Driven Tuning Parameter Selection for High-Dimensional Vector Autoregressions 2024-12-23
Show

Lasso-type estimators are routinely used to estimate high-dimensional time series models. The theoretical guarantees established for these estimators typically require the penalty level to be chosen in a suitable fashion often depending on unknown population quantities. Furthermore, the resulting estimates and the number of variables retained in the model depend crucially on the chosen penalty level. However, there is currently no theoretically founded guidance for this choice in the context of high-dimensional time series. Instead, one resorts to selecting the penalty level in an ad hoc manner using, e.g., information criteria or cross-validation. We resolve this problem by considering estimation of the perhaps most commonly employed multivariate time series model, the linear vector autoregressive (VAR) model, and propose versions of the Lasso, post-Lasso, and square-root Lasso estimators with penalization chosen in a fully data-driven way. The theoretical guarantees that we establish for the resulting estimation and prediction errors match those currently available for methods based on infeasible choices of penalization. We thus provide a first solution for choosing the penalization in high-dimensional time series models.

90 pages, 5 figures
Improving the Noise Estimation of Latent Neural Stochastic Differential Equations 2024-12-23
Show

Latent neural stochastic differential equations (SDEs) have recently emerged as a promising approach for learning generative models from stochastic time series data. However, they systematically underestimate the noise level inherent in such data, limiting their ability to capture stochastic dynamics accurately. We investigate this underestimation in detail and propose a straightforward solution: by including an explicit additional noise regularization in the loss function, we are able to learn a model that accurately captures the diffusion component of the data. We demonstrate our results on a conceptual model system that highlights the improved latent neural SDE's capability to model stochastic bistable dynamics.

How to build your latent Markov model -- the role of time and space 2024-12-23
Show

Statistical models that involve latent Markovian state processes have become immensely popular tools for analysing time series and other sequential data. However, the plethora of model formulations, the inconsistent use of terminology, and the various inferential approaches and software packages can be overwhelming to practitioners, especially when they are new to this area. With this review-like paper, we thus aim to provide guidance for both statisticians and practitioners working with latent Markov models by offering a unifying view on what otherwise are often considered separate model classes, from hidden Markov models over state-space models to Markov-modulated Poisson processes. In particular, we provide a roadmap for identifying a suitable latent Markov model formulation given the data to be analysed. Furthermore, we emphasise that it is key to applied work with any of these model classes to understand how recursive techniques exploiting the models' dependence structure can be used for inference. The R package LaMa adapts this unified view and provides an easy-to-use framework for very fast (C++ based) numerical maximum likelihood estimation of any of the models discussed in this paper, allowing users to tailor a latent Markov model to their data using a Lego-type approach.

52 pages, 7 figures
Geographic distribution of the global agricultural workforce every decade for the years 2000-2100 2024-12-23
Show

Agricultural workers play a vital role in the global economy and food security by cultivating, transporting, and processing food for populations worldwide. Despite their importance, detailed spatial data on the global agricultural workforce have remained scarce. Here, we present a new gridded dataset that maps the global distribution of agricultural workers for every decade over the years 2000-2100, distributed at 0.083$\times$0.083 degrees resolution, roughly $\sim$10km$\times$10km at the Equator. The dataset is developed using an empirical modeling framework relying on generalized additive mixed models (GAMMs) that integrate socioeconomic variables, including gross domestic product per capita, total population, rural population size, and agricultural land use. The predictions are consistent with Shared Socio-economic Pathways and we distribute full time series data for all SSPs 1 to 5. This dataset opens new avenues for future research on labour force health, productivity and risk, and could be very useful for developing informed, forward-looking strategies that address the challenges of climate resilience in agriculture. The dataset and code for reproducing it are available for the user community [publicly available on publication at DOI: 10.5281/zenodo.14443333].

HDTSA: An R package for high-dimensional time series analysis 2024-12-23
Show

High-dimensional time series analysis has become increasingly important in fields such as finance, economics, and biology. The two primary tasks for high-dimensional time series analysis are modeling and statistical inference, which aim to capture the underlying dynamic structure and investigate valuable information in the data. This paper presents the HDTSA package for R, which provides a general framework for analyzing high-dimensional time series data. This package includes four dimension reduction methods for modeling: factor models, principal component analysis, CP-decomposition, and cointegration analysis. It also implements two recently proposed white noise test and martingale difference test in high-dimensional scenario for statistical inference. The methods provided in this package can help users to analyze high-dimensional time series data and make reliable predictions. To improve computational efficiency, the HDTSA package integrates C++ through the Rcpp package. We illustrate the functions of the HDTSA package using simulated examples and real-world applications from finance and economics.

Trajectory

Title Date Abstract Comment
In-Trajectory Inverse Reinforcement Learning: Learn Incrementally Before An Ongoing Trajectory Terminates 2025-01-02
Show

Inverse reinforcement learning (IRL) aims to learn a reward function and a corresponding policy that best fit the demonstrated trajectories of an expert. However, current IRL works cannot learn incrementally from an ongoing trajectory because they have to wait to collect at least one complete trajectory to learn. To bridge the gap, this paper considers the problem of learning a reward function and a corresponding policy while observing the initial state-action pair of an ongoing trajectory and keeping updating the learned reward and policy when new state-action pairs of the ongoing trajectory are observed. We formulate this problem as an online bi-level optimization problem where the upper level dynamically adjusts the learned reward according to the newly observed state-action pairs with the help of a meta-regularization term, and the lower level learns the corresponding policy. We propose a novel algorithm to solve this problem and guarantee that the algorithm achieves sub-linear local regret $O(\sqrt{T}+\log T+\sqrt{T}\log T)$. If the reward function is linear, we prove that the proposed algorithm achieves sub-linear regret $O(\log T)$. Experiments are used to validate the proposed algorithm.

Trajectory Representation Learning on Road Networks and Grids with Spatio-Temporal Dynamics 2025-01-02
Show

Trajectory representation learning is a fundamental task for applications in fields including smart city, and urban planning, as it facilitates the utilization of trajectory data (e.g., vehicle movements) for various downstream applications, such as trajectory similarity computation or travel time estimation. This is achieved by learning low-dimensional representations from high-dimensional and raw trajectory data. However, existing methods for trajectory representation learning either rely on grid-based or road-based representations, which are inherently different and thus, could lose information contained in the other modality. Moreover, these methods overlook the dynamic nature of urban traffic, relying on static road network features rather than time varying traffic patterns. In this paper, we propose TIGR, a novel model designed to integrate grid and road network modalities while incorporating spatio-temporal dynamics to learn rich, general-purpose representations of trajectories. We evaluate TIGR on two realworld datasets and demonstrate the effectiveness of combining both modalities by substantially outperforming state-of-the-art methods, i.e., up to 43.22% for trajectory similarity, up to 16.65% for travel time estimation, and up to 10.16% for destination prediction.

Synergistic Multi-Agent Framework with Trajectory Learning for Knowledge-Intensive Tasks 2025-01-02
Show

Recent advancements in Large Language Models (LLMs) have led to significant breakthroughs in various natural language processing tasks. However, generating factually consistent responses in knowledge-intensive scenarios remains a challenge due to issues such as hallucination, difficulty in acquiring long-tailed knowledge, and limited memory expansion. This paper introduces SMART, a novel multi-agent framework that leverages external knowledge to enhance the interpretability and factual consistency of LLM-generated responses. SMART comprises four specialized agents, each performing a specific sub-trajectory action to navigate complex knowledge-intensive tasks. We propose a multi-agent co-training paradigm, Long-Short Trajectory Learning, which ensures synergistic collaboration among agents while maintaining fine-grained execution by each agent. Extensive experiments on five knowledge-intensive tasks demonstrate SMART's superior performance compared to widely adopted knowledge internalization and knowledge enhancement methods. Our framework can extend beyond knowledge-intensive tasks to more complex scenarios. Our code is available at https://github.com/yueshengbin/SMART.

Accepted by AAAI2025
Diffusion Policies for Generative Modeling of Spacecraft Trajectories 2025-01-01
Show

Machine learning has demonstrated remarkable promise for solving the trajectory generation problem and in paving the way for online use of trajectory optimization for resource-constrained spacecraft. However, a key shortcoming in current machine learning-based methods for trajectory generation is that they require large datasets and even small changes to the original trajectory design requirements necessitate retraining new models to learn the parameter-to-solution mapping. In this work, we leverage compositional diffusion modeling to efficiently adapt out-of-distribution data and problem variations in a few-shot framework for 6 degree-of-freedom (DoF) powered descent trajectory generation. Unlike traditional deep learning methods that can only learn the underlying structure of one specific trajectory optimization problem, diffusion models are a powerful generative modeling framework that represents the solution as a probability density function (PDF) and this allows for the composition of PDFs encompassing a variety of trajectory design specifications and constraints. We demonstrate the capability of compositional diffusion models for inference-time 6 DoF minimum-fuel landing site selection and composable constraint representations. Using these samples as initial guesses for 6 DoF powered descent guidance enables dynamically feasible and computationally efficient trajectory generation.

AIAA ...

AIAA SCITECH 2025 Forum

Spatial Temporal Attention based Target Vehicle Trajectory Prediction for Internet of Vehicles 2025-01-01
Show

Forecasting vehicle behavior within complex traffic environments is pivotal within Intelligent Transportation Systems (ITS). Though this technology plays a significant role in alleviating the prevalent operational difficulties in logistics and transportation systems, the precise prediction of vehicle trajectories still poses a substantial challenge. To address this, our study introduces the Spatio Temporal Attention-based methodology for Target Vehicle Trajectory Prediction (STATVTPred). This approach integrates Global Positioning System(GPS) localization technology to track target movement and dynamically predict the vehicle's future path using comprehensive spatio-temporal trajectory data. We map the vehicle trajectory onto a directed graph, after which spatial attributes are extracted via a Graph Attention Networks(GATs). The Transformer technology is employed to yield temporal features from the sequence. These elements are then amalgamated with local road network structure maps to filter and deliver a smooth trajectory sequence, resulting in precise vehicle trajectory prediction.This study validates our proposed STATVTPred method on T-Drive and Chengdu taxi-trajectory datasets. The experimental results demonstrate that STATVTPred achieves 6.38% and 10.55% higher Average Match Rate (AMR) than the Transformer model on the Beijing and Chengdu datasets, respectively. Compared to the LSTM Encoder-Decoder model, STATVTPred boosts AMR by 37.45% and 36.06% on the same datasets. This is expected to establish STATVTPred as a new approach for handling trajectory prediction of targets in logistics and transportation scenarios, thereby enhancing prediction accuracy.

TAME: Temporal Audio-based Mamba for Enhanced Drone Trajectory Estimation and Classification 2025-01-01
Show

The increasing prevalence of compact UAVs has introduced significant risks to public safety, while traditional drone detection systems are often bulky and costly. To address these challenges, we present TAME, the Temporal Audio-based Mamba for Enhanced Drone Trajectory Estimation and Classification. This innovative anti-UAV detection model leverages a parallel selective state-space model to simultaneously capture and learn both the temporal and spectral features of audio, effectively analyzing propagation of sound. To further enhance temporal features, we introduce a Temporal Feature Enhancement Module, which integrates spectral features into temporal data using residual cross-attention. This enhanced temporal information is then employed for precise 3D trajectory estimation and classification. Our model sets a new standard of performance on the MMUAD benchmarks, demonstrating superior accuracy and effectiveness. The code and trained models are publicly available on GitHub \url{https://github.com/AmazingDay1/TAME}.

Audio Array-Based 3D UAV Trajectory Estimation with LiDAR Pseudo-Labeling 2025-01-01
Show

As small unmanned aerial vehicles (UAVs) become increasingly prevalent, there is growing concern regarding their impact on public safety and privacy, highlighting the need for advanced tracking and trajectory estimation solutions. In response, this paper introduces a novel framework that utilizes audio array for 3D UAV trajectory estimation. Our approach incorporates a self-supervised learning model, starting with the conversion of audio data into mel-spectrograms, which are analyzed through an encoder to extract crucial temporal and spectral information. Simultaneously, UAV trajectories are estimated using LiDAR point clouds via unsupervised methods. These LiDAR-based estimations act as pseudo labels, enabling the training of an Audio Perception Network without requiring labeled data. In this architecture, the LiDAR-based system operates as the Teacher Network, guiding the Audio Perception Network, which serves as the Student Network. Once trained, the model can independently predict 3D trajectories using only audio signals, with no need for LiDAR data or external ground truth during deployment. To further enhance precision, we apply Gaussian Process modeling for improved spatiotemporal tracking. Our method delivers top-tier performance on the MMAUD dataset, establishing a new benchmark in trajectory estimation using self-supervised learning techniques without reliance on ground truth annotations.

Accepted for ICASSP
Trajectories of Change: Approaches for Tracking Knowledge Evolution 2024-12-31
Show

We explore local vs. global evolution of knowledge systems through the framework of socio-epistemic networks (SEN), applying two complementary methods to a corpus of scientific texts. The framework comprises three interconnected layers-social, semiotic (material), and semantic-proposing a multilayered approach to understanding structural developments of knowledge. To analyse diachronic changes on the semantic layer, we first use information-theoretic measures based on relative entropy to detect semantic shifts, assess their significance, and identify key driving features. Second, variations in document embedding densities reveal changes in semantic neighbourhoods, tracking how concentration of similar documents increase, remain stable, or disperse. This enables us to trace document trajectories based on content (topics) or metadata (authorship, institution). Case studies of Joseph Silk and Hans-J"urgen Treder illustrate how individual scholar's work aligns with broader disciplinary shifts in general relativity and gravitation research, demonstrating the applications, limitations, and further potential of this approach.

TrajLearn: Trajectory Prediction Learning using Deep Generative Models 2024-12-30
Show

Trajectory prediction aims to estimate an entity's future path using its current position and historical movement data, benefiting fields like autonomous navigation, robotics, and human movement analytics. Deep learning approaches have become key in this area, utilizing large-scale trajectory datasets to model movement patterns, but face challenges in managing complex spatial dependencies and adapting to dynamic environments. To address these challenges, we introduce TrajLearn, a novel model for trajectory prediction that leverages generative modeling of higher-order mobility flows based on hexagonal spatial representation. TrajLearn predicts the next $k$ steps by integrating a customized beam search for exploring multiple potential paths while maintaining spatial continuity. We conducted a rigorous evaluation of TrajLearn, benchmarking it against leading state-of-the-art approaches and meaningful baselines. The results indicate that TrajLearn achieves significant performance gains, with improvements of up to ~40% across multiple real-world trajectory datasets. In addition, we evaluated different prediction horizons (i.e., various values of $k$), conducted resolution sensitivity analysis, and performed ablation studies to assess the impact of key model components. Furthermore, we developed a novel algorithm to generate mixed-resolution maps by hierarchically subdividing hexagonal regions into finer segments within a specified observation area. This approach supports selective detailing, applying finer resolution to areas of interest or high activity (e.g., urban centers) while using coarser resolution for less significant regions (e.g., rural areas), effectively reducing data storage requirements and computational overhead. We promote reproducibility and adaptability by offering complete code, data, and detailed documentation with flexible configuration options for various applications.

STITCHER: Real-Time Trajectory Planning with Motion Primitive Search 2024-12-30
Show

Autonomous high-speed navigation through large, complex environments requires real-time generation of agile trajectories that are dynamically feasible, collision-free, and satisfy state or actuator constraints. Most modern trajectory planning techniques rely on numerical optimization because high-quality, expressive trajectories that satisfy various constraints can be systematically computed. However, meeting computation time constraints and the potential for numerical instabilities can limit the use of optimization-based planners in safety-critical scenarios. This work presents an optimization-free planning framework that stitches short trajectory segments together with graph search to compute long range, expressive, and near-optimal trajectories in real-time. Our STITCHER algorithm is shown to outperform modern optimization-based planners through our innovative planning architecture and several algorithmic developments that make real-time planning possible. Extensive simulation testing is conducted to analyze the algorithmic components that make up STITCHER, and a thorough comparison with two state-of-the-art optimization planners is performed. It is shown STITCHER can generate trajectories through complex environments over long distances (tens of meters) with low computation times (milliseconds).

V1 Draft
DEMO: A Dynamics-Enhanced Learning Model for Multi-Horizon Trajectory Prediction in Autonomous Vehicles 2024-12-30
Show

Autonomous vehicles (AVs) rely on accurate trajectory prediction of surrounding vehicles to ensure the safety of both passengers and other road users. Trajectory prediction spans both short-term and long-term horizons, each requiring distinct considerations: short-term predictions rely on accurately capturing the vehicle's dynamics, while long-term predictions rely on accurately modeling the interaction patterns within the environment. However current approaches, either physics-based or learning-based models, always ignore these distinct considerations, making them struggle to find the optimal prediction for both short-term and long-term horizon. In this paper, we introduce the Dynamics-Enhanced Learning MOdel (DEMO), a novel approach that combines a physics-based Vehicle Dynamics Model with advanced deep learning algorithms. DEMO employs a two-stage architecture, featuring a Dynamics Learning Stage and an Interaction Learning Stage, where the former stage focuses on capturing vehicle motion dynamics and the latter focuses on modeling interaction. By capitalizing on the respective strengths of both methods, DEMO facilitates multi-horizon predictions for future trajectories. Experimental results on the Next Generation Simulation (NGSIM), Macau Connected Autonomous Driving (MoCAD), Highway Drone (HighD), and nuScenes datasets demonstrate that DEMO outperforms state-of-the-art (SOTA) baselines in both short-term and long-term prediction horizons.

Accep...

Accepted by Information Fusion

ESI-GAL: EEG Source Imaging-based Trajectory Estimation for Grasp and Lift Task 2024-12-30
Show

Electroencephalogram (EEG) signals-based motor kinematics prediction (MKP) has been an active area of research to develop brain-computer interface (BCI) systems such as exosuits, prostheses, and rehabilitation devices. However, EEG source imaging (ESI) based kinematics prediction is sparsely explored in the literature. In this study, pre-movement EEG features are utilized to predict three-dimensional (3D) hand kinematics for the grasp-and-lift motor task. A public dataset, WAY-EEG-GAL, is utilized for MKP analysis. In particular, sensor-domain (EEG data) and source-domain (ESI data) based features from the frontoparietal region are explored for MKP. Deep learning-based models are explored to achieve efficient kinematics decoding. Various time-lagged and window sizes are analyzed for hand kinematics prediction. Subsequently, intra-subject and inter-subject MKP analysis is performed to investigate the subject-specific and subject-independent motor-learning capabilities of the neural decoders. The Pearson correlation coefficient (PCC) is used as the performance metric for kinematics trajectory decoding. The rEEGNet neural decoder achieved the best performance with sensor-domain and source-domain features with a time lag and window size of 100 ms and 450 ms, respectively. The highest mean PCC values of 0.790, 0.795, and 0.637 are achieved using sensor-domain features, while 0.769, 0.777, and 0.647 are achieved using source-domain features in x, y, and z-directions, respectively. This study explores the feasibility of trajectory prediction using EEG sensor-domain and source-domain EEG features for the grasp-and-lift task. Furthermore, inter-subject trajectory estimation is performed using the proposed deep learning decoder with EEG source domain features.

Learning Optimal Control and Dynamical Structure of Global Trajectory Search Problems with Diffusion Models 2024-12-29
Show

Spacecraft trajectory design is a global search problem, where previous work has revealed specific solution structures that can be captured with data-driven methods. This paper explores two global search problems in the circular restricted three-body problem: hybrid cost function of minimum fuel/time-of-flight and transfers to energy-dependent invariant manifolds. These problems display a fundamental structure either in the optimal control profile or the use of dynamical structures. We build on our prior generative machine learning framework to apply diffusion models to learn the conditional probability distribution of the search problem and analyze the model's capability to capture these structures.

This ...

This paper was presented at the AAS/AIAA Astrodynamics Specialist Conference

Leveraging Symmetry to Accelerate Learning of Trajectory Tracking Controllers for Free-Flying Robotic Systems 2024-12-29
Show

Tracking controllers enable robotic systems to accurately follow planned reference trajectories. In particular, reinforcement learning (RL) has shown promise in the synthesis of controllers for systems with complex dynamics and modest online compute budgets. However, the poor sample efficiency of RL and the challenges of reward design make training slow and sometimes unstable, especially for high-dimensional systems. In this work, we leverage the inherent Lie group symmetries of robotic systems with a floating base to mitigate these challenges when learning tracking controllers. We model a general tracking problem as a Markov decision process (MDP) that captures the evolution of both the physical and reference states. Next, we prove that symmetry in the underlying dynamics and running costs leads to an MDP homomorphism, a mapping that allows a policy trained on a lower-dimensional "quotient" MDP to be lifted to an optimal tracking controller for the original system. We compare this symmetry-informed approach to an unstructured baseline, using Proximal Policy Optimization (PPO) to learn tracking controllers for three systems: the Particle (a forced point mass), the Astrobee (a fully-actuated space robot), and the Quadrotor (an underactuated system). Results show that a symmetry-aware approach both accelerates training and reduces tracking error after the same number of training steps.

The f...

The first three authors contributed equally to this work. This version resolves PDF compatibility issues in some browsers

Global Search of Optimal Spacecraft Trajectories using Amortization and Deep Generative Models 2024-12-28
Show

Preliminary spacecraft trajectory optimization is a parameter dependent global search problem that aims to provide a set of solutions that are of high quality and diverse. In the case of numerical solution, it is dependent on the original optimal control problem, the choice of a control transcription, and the behavior of a gradient based numerical solver. In this paper we formulate the parameterized global search problem as the task of sampling a conditional probability distribution with support on the neighborhoods of local basins of attraction to the high quality solutions. The conditional distribution is learned and represented using deep generative models that allow for prediction of how the local basins change as parameters vary. The approach is benchmarked on a low thrust spacecraft trajectory optimization problem in the circular restricted three-body problem, showing significant speed-up over a simple multi-start method and vanilla machine learning approaches. The paper also provides an in-depth analysis of the multi-modal funnel structure of a low-thrust spacecraft trajectory optimization problem.

47 pa...

47 pages, 23 figures, initial content of this paper appears in Paper 23-352 at the AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT, August 13-17 2023

UAV-Enabled Secure ISAC Against Dual Eavesdropping Threats: Joint Beamforming and Trajectory Design 2024-12-27
Show

In this work, we study an unmanned aerial vehicle (UAV)-enabled secure integrated sensing and communication (ISAC) system, where a UAV serves as an aerial base station (BS) to simultaneously perform communication with a user and detect a target on the ground, while a dual-functional eavesdropper attempts to intercept the signals for both sensing and communication. Facing the dual eavesdropping threats, we aim to enhance the average achievable secrecy rate for the communication user by jointly designing the UAV trajectory together with the transmit information and sensing beamforming, while satisfying the requirements on sensing performance and sensing security, as well as the UAV power and flight constraints. To address the non-convex nature of the optimization problem, we employ the alternating optimization (AO) strategy, jointly with the successive convex approximation (SCA) and semidefinite relaxation (SDR) methods. Numerical results validate the proposed approach, demonstrating its ability to achieve a high secrecy rate while meeting the required sensing and security constraints.

7 pag...

7 pages, 6 figures, submitted for possible publication

OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis 2024-12-27
Show

Graphical User Interface (GUI) agents powered by Vision-Language Models (VLMs) have demonstrated human-like computer control capability. Despite their utility in advancing digital automation, a critical bottleneck persists: collecting high-quality trajectory data for training. Common practices for collecting such data rely on human supervision or synthetic data generation through executing pre-defined tasks, which are either resource-intensive or unable to guarantee data quality. Moreover, these methods suffer from limited data diversity and significant gaps between synthetic data and real-world environments. To address these challenges, we propose OS-Genesis, a novel GUI data synthesis pipeline that reverses the conventional trajectory collection process. Instead of relying on pre-defined tasks, OS-Genesis enables agents first to perceive environments and perform step-wise interactions, then retrospectively derive high-quality tasks to enable trajectory-level exploration. A trajectory reward model is then employed to ensure the quality of the generated trajectories. We demonstrate that training GUI agents with OS-Genesis significantly improves their performance on highly challenging online benchmarks. In-depth analysis further validates OS-Genesis's efficiency and its superior data quality and diversity compared to existing synthesis methods. Our codes, data, and checkpoints are available at \href{https://qiushisun.github.io/OS-Genesis-Home/}{OS-Genesis Homepage}.

Work in progress
A data driven approach to classify descriptors based on their efficiency in translating noisy trajectories into physically-relevant information 2024-12-27
Show

Reconstructing the physical complexity of many-body dynamical systems can be challenging. Starting from the trajectories of their constitutive units (raw data), typical approaches require selecting appropriate descriptors to convert them into time-series, which are then analyzed to extract interpretable information. However, identifying the most effective descriptor is often non-trivial. Here, we report a data-driven approach to compare the efficiency of various descriptors in extracting information from noisy trajectories and translating it into physically relevant insights. As a prototypical system with non-trivial internal complexity, we analyze molecular dynamics trajectories of an atomistic system where ice and water coexist in equilibrium near the solid/liquid transition temperature. We compare general and specific descriptors often used in aqueous systems: number of neighbors, molecular velocities, Smooth Overlap of Atomic Positions (SOAP), Local Environments and Neighbors Shuffling (LENS), Orientational Tetrahedral Order, and distance from the fifth neighbor ($d_5$). Using Onion Clustering -- an efficient unsupervised method for single-point time-series analysis -- we assess the maximum extractable information for each descriptor and rank them via a high-dimensional metric. Our results show that advanced descriptors like SOAP and LENS outperform classical ones due to higher signal-to-noise ratios. Nonetheless, even simple descriptors can rival or exceed advanced ones after local signal denoising. For example, $d_5$, initially among the weakest, becomes the most effective at resolving the system's non-local dynamical complexity after denoising. This work highlights the critical role of noise in information extraction from molecular trajectories and offers a data-driven approach to identify optimal descriptors for systems with characteristic internal complexity.

19 pa...

19 pages, 5 figures + 3 in supporting information (at the bottom of the manuscript)

TrajGEOS: Trajectory Graph Enhanced Orientation-based Sequential Network for Mobility Prediction 2024-12-26
Show

Human mobility studies how people move to access their needed resources and plays a significant role in urban planning and location-based services. As a paramount task of human mobility modeling, next location prediction is challenging because of the diversity of users' historical trajectories that gives rise to complex mobility patterns and various contexts. Deep sequential models have been widely used to predict the next location by leveraging the inherent sequentiality of trajectory data. However, they do not fully leverage the relationship between locations and fail to capture users' multi-level preferences. This work constructs a trajectory graph from users' historical traces and proposes a \textbf{Traj}ectory \textbf{G}raph \textbf{E}nhanced \textbf{O}rientation-based \textbf{S}equential network (TrajGEOS) for next-location prediction tasks. TrajGEOS introduces hierarchical graph convolution to capture location and user embeddings. Such embeddings consider not only the contextual feature of locations but also the relation between them, and serve as additional features in downstream modules. In addition, we design an orientation-based module to learn users' mid-term preferences from sequential modeling modules and their recent trajectories. Extensive experiments on three real-world LBSN datasets corroborate the value of graph and orientation-based modules and demonstrate that TrajGEOS outperforms the state-of-the-art methods on the next location prediction task.

CAPER: Enhancing Career Trajectory Prediction using Temporal Knowledge Graph and Ternary Relationship 2024-12-26
Show

The problem of career trajectory prediction (CTP) aims to predict one's future employer or job position. While several CTP methods have been developed for this problem, we posit that none of these methods (1) jointly considers the mutual ternary dependency between three key units (i.e., user, position, and company) of a career and (2) captures the characteristic shifts of key units in career over time, leading to an inaccurate understanding of the job movement patterns in the labor market. To address the above challenges, we propose a novel solution, named as CAPER, that solves the challenges via sophisticated temporal knowledge graph (TKG) modeling. It enables the utilization of a graph-structured knowledge base with rich expressiveness, effectively preserving the changes in job movement patterns. Furthermore, we devise an extrapolated career reasoning task on TKG for a realistic evaluation. The experiments on a real-world career trajectory dataset demonstrate that CAPER consistently and significantly outperforms four baselines, two recent TKG reasoning methods, and five state-of-the-art CTP methods in predicting one's future companies and positions--i.e., on average, yielding 6.80% and 34.58% more accurate predictions, respectively. The codebase of CAPER is available at https://github.com/Bigdasgit/CAPER.

Accep...

Accepted by ACM KDD 2025

Single Trajectory Distillation for Accelerating Image and Video Style Transfer 2024-12-25
Show

Diffusion-based stylization methods typically denoise from a specific partial noise state for image-to-image and video-to-video tasks. This multi-step diffusion process is computationally expensive and hinders real-world application. A promising solution to speed up the process is to obtain few-step consistency models through trajectory distillation. However, current consistency models only force the initial-step alignment between the probability flow ODE (PF-ODE) trajectories of the student and the imperfect teacher models. This training strategy can not ensure the consistency of whole trajectories. To address this issue, we propose single trajectory distillation (STD) starting from a specific partial noise state. We introduce a trajectory bank to store the teacher model's trajectory states, mitigating the time cost during training. Besides, we use an asymmetric adversarial loss to enhance the style and quality of the generated images. Extensive experiments on image and video stylization demonstrate that our method surpasses existing acceleration models in terms of style similarity and aesthetic evaluations. Our code and results will be available on the project page: https://single-trajectory-distillation.github.io.

CausalTAD: Causal Implicit Generative Model for Debiased Online Trajectory Anomaly Detection 2024-12-25
Show

Trajectory anomaly detection, aiming to estimate the anomaly risk of trajectories given the Source-Destination (SD) pairs, has become a critical problem for many real-world applications. Existing solutions directly train a generative model for observed trajectories and calculate the conditional generative probability $P({T}

{C})$ as the anomaly risk, where ${T}$ and ${C}$ represent the trajectory and SD pair respectively. However, we argue that the observed trajectories are confounded by road network preference which is a common cause of both SD distribution and trajectories. Existing methods ignore this issue limiting their generalization ability on out-of-distribution trajectories. In this paper, we define the debiased trajectory anomaly detection problem and propose a causal implicit generative model, namely CausalTAD, to solve it. CausalTAD adopts do-calculus to eliminate the confounding bias of road network preference and estimates $P({T}
SCKF-LSTM Based Trajectory Tracking for Electricity-Gas Integrated Energy System 2024-12-24
Show

This paper introduces a novel approach for tracking the dynamic trajectories of integrated natural gas and power systems, leveraging a Kalman filter-based structure. To predict the states of the system, the Holt's exponential smoothing techniques and nonlinear dynamic equations of gas pipelines are applied to establish the power and gas system equations, respectively. The square-root cubature Kalman filter algorithm is utilized to address the numerical challenges posed by the strongly nonlinear system equations. The boundary conditions in the gas system include the flow balances at sink nodes, and the mass flow rates of loads have to be predicted at each computation step. For the prediction of load mass flows, the long short-term memory network is employed, known for its effectiveness in time series prediction. Consequently, a combined method based on the square-root cubature Kalman filter and the long short-term memory network is proposed for tracking integrated gas and power systems. To evaluate the tracking performances of the proposed method, the IEEE-39 bus power system and GasLib-40 node gas system are used to form the testing system. Simulation results demonstrate high precision in tracking the dynamic states of power and gas systems. Two indexes are introduced for a numerical analysis of the tracking results, indicating that the accuracy of this method surpasses that of traditional measurements.

Accep...

Accepted by IEEE Transactions on Industrial Informatics

Quantum framework for Reinforcement Learning: integrating Markov Decision Process, quantum arithmetic, and trajectory search 2024-12-24
Show

This paper introduces a quantum framework for addressing reinforcement learning (RL) tasks, grounded in the quantum principles and leveraging a fully quantum model of the classical Markov Decision Process (MDP). By employing quantum concepts and a quantum search algorithm, this work presents the implementation and optimization of the agent-environment interactions entirely within the quantum domain, eliminating reliance on classical computations. Key contributions include the quantum-based state transitions, return calculation, and trajectory search mechanism that utilize quantum principles to demonstrate the realization of RL processes through quantum phenomena. The implementation emphasizes the fundamental role of quantum superposition in enhancing computational efficiency for RL tasks. Experimental results demonstrate the capacity of a quantum model to achieve quantum advantage in RL, highlighting the potential of fully quantum implementations in decision-making tasks. This work not only underscores the applicability of quantum computing in machine learning but also contributes the field of quantum reinforcement learning (QRL) by offering a robust framework for understanding and exploiting quantum computing in RL systems.

C2F-TP: A Coarse-to-Fine Denoising Framework for Uncertainty-Aware Trajectory Prediction 2024-12-24
Show

Accurately predicting the trajectory of vehicles is critically important for ensuring safety and reliability in autonomous driving. Although considerable research efforts have been made recently, the inherent trajectory uncertainty caused by various factors including the dynamic driving intends and the diverse driving scenarios still poses significant challenges to accurate trajectory prediction. To address this issue, we propose C2F-TP, a coarse-to-fine denoising framework for uncertainty-aware vehicle trajectory prediction. C2F-TP features an innovative two-stage coarse-to-fine prediction process. Specifically, in the spatial-temporal interaction stage, we propose a spatial-temporal interaction module to capture the inter-vehicle interactions and learn a multimodal trajectory distribution, from which a certain number of noisy trajectories are sampled. Next, in the trajectory refinement stage, we design a conditional denoising model to reduce the uncertainty of the sampled trajectories through a step-wise denoising operation. Extensive experiments are conducted on two real datasets NGSIM and highD that are widely adopted in trajectory prediction. The result demonstrates the effectiveness of our proposal.

Accep...

Accepted by AAAI 2025

Addressing and Visualizing Misalignments in Human Task-Solving Trajectories 2024-12-23
Show

The effectiveness of AI model training hinges on the quality of the trajectory data used, particularly in aligning the model's decision with human intentions. However, in the human task-solving trajectories, we observe significant misalignments between human intentions and the recorded trajectories, which can undermine AI model training. This paper addresses the challenges of these misalignments by proposing a visualization tool and a heuristic algorithm designed to detect and categorize discrepancies in trajectory data. Although the heuristic algorithm requires a set of predefined human intentions to function, which we currently cannot extract, the visualization tool offers valuable insights into the nature of these misalignments. We expect that eliminating these misalignments could significantly improve the utility of trajectory data for AI model training. We also propose that future work should focus on developing methods, such as Topic Modeling, to accurately extract human intentions from trajectory data, thereby enhancing the alignment between user actions and AI learning processes.

Similarity Trajectories: Linking Sampling Process to Artifacts in Diffusion-Generated Images 2024-12-22
Show

Artifact detection algorithms are crucial to correcting the output generated by diffusion models. However, because of the variety of artifact forms, existing methods require substantial annotated data for training. This requirement limits their scalability and efficiency, which restricts their wide application. This paper shows that the similarity of denoised images between consecutive time steps during the sampling process is related to the severity of artifacts in images generated by diffusion models. Building on this observation, we introduce the concept of Similarity Trajectory to characterize the sampling process and its correlation with the image artifacts presented. Using an annotated data set of 680 images, which is only 0.1% of the amount of data used in the prior work, we trained a classifier on these trajectories to predict the presence of artifacts in images. By performing 10-fold validation testing on the balanced annotated data set, the classifier can achieve an accuracy of 72.35%, highlighting the connection between the Similarity Trajectory and the occurrence of artifacts. This approach enables differentiation between artifact-exhibiting and natural-looking images using limited training data.

HyperNet Fields: Efficiently Training Hypernetworks without Ground Truth by Learning Weight Trajectories 2024-12-22
Show

To efficiently adapt large models or to train generative models of neural representations, Hypernetworks have drawn interest. While hypernetworks work well, training them is cumbersome, and often requires ground truth optimized weights for each sample. However, obtaining each of these weights is a training problem of its own-one needs to train, e.g., adaptation weights or even an entire neural field for hypernetworks to regress to. In this work, we propose a method to train hypernetworks, without the need for any per-sample ground truth. Our key idea is to learn a Hypernetwork Field and estimate the entire trajectory of network weight training instead of simply its converged state. In other words, we introduce an additional input to the Hypernetwork, the convergence state, which then makes it act as a neural field that models the entire convergence pathway of a task network. A critical benefit in doing so is that the gradient of the estimated weights at any convergence state must then match the gradients of the original task -- this constraint alone is sufficient to train the Hypernetwork Field. We demonstrate the effectiveness of our method through the task of personalized image generation and 3D shape reconstruction from images and point clouds, demonstrating competitive results without any per-sample ground truth.

Swept Volume-Aware Trajectory Planning and MPC Tracking for Multi-Axle Swerve-Drive AMRs 2024-12-22
Show

Multi-axle autonomous mobile robots (AMRs) are set to revolutionize the future of robotics in logistics. As the backbone of next-generation solutions, these robots face a critical challenge: managing and minimizing the swept volume during turns while maintaining precise control. Traditional systems designed for standard vehicles often struggle with the complex dynamics of multi-axle configurations, leading to inefficiency and increased safety risk in confined spaces. Our innovative framework overcomes these limitations by combining swept volume minimization with Signed Distance Field (SDF) path planning and model predictive control (MPC) for independent wheel steering. This approach not only plans paths with an awareness of the swept volume but actively minimizes it in real-time, allowing each axle to follow a precise trajectory while significantly reducing the space the vehicle occupies. By predicting future states and adjusting the turning radius of each wheel, our method enhances both maneuverability and safety, even in the most constrained environments. Unlike previous works, our solution goes beyond basic path calculation and tracking, offering real-time path optimization with minimal swept volume and efficient individual axle control. To our knowledge, this is the first comprehensive approach to tackle these challenges, delivering life-saving improvements in control, efficiency, and safety for multi-axle AMRs. Furthermore, we will open-source our work to foster collaboration and enable others to advance safer, more efficient autonomous systems.

Submi...

Submitted to ICRA 2025

Towards Efficient MPPI Trajectory Generation with Unscented Guidance: U-MPPI Control Strategy 2024-12-21
Show

The classical Model Predictive Path Integral (MPPI) control framework, while effective in many applications, lacks reliable safety features due to its reliance on a risk-neutral trajectory evaluation technique, which can present challenges for safety-critical applications such as autonomous driving. Furthermore, when the majority of MPPI sampled trajectories concentrate in high-cost regions, it may generate an infeasible control sequence. To address this challenge, we propose the U-MPPI control strategy, a novel methodology that can effectively manage system uncertainties while integrating a more efficient trajectory sampling strategy. The core concept is to leverage the Unscented Transform (UT) to propagate not only the mean but also the covariance of the system dynamics, going beyond the traditional MPPI method. As a result, it introduces a novel and more efficient trajectory sampling strategy, significantly enhancing state-space exploration and ultimately reducing the risk of being trapped in local minima. Furthermore, by leveraging the uncertainty information provided by UT, we incorporate a risk-sensitive cost function that explicitly accounts for risk or uncertainty throughout the trajectory evaluation process, resulting in a more resilient control system capable of handling uncertain conditions. By conducting extensive simulations of 2D aggressive autonomous navigation in both known and unknown cluttered environments, we verify the efficiency and robustness of our proposed U-MPPI control strategy compared to the baseline MPPI. We further validate the practicality of U-MPPI through real-world demonstrations in unknown cluttered environments, showcasing its superior ability to incorporate both the UT and local costmap into the optimization problem without introducing additional complexity.

This ...

This paper comprises 20 pages, 11 figures, 4 tables, 1 algorithm, and 1 appendix. It has been accepted for publication in the IEEE Transactions on Robotics (T-RO), December 2024

Surrogate Modeling of Trajectory Map-matching in Urban Road Networks using Transformer Sequence-to-Sequence Model 2024-12-21
Show

Large-scale geolocation telematics data acquired from connected vehicles has the potential to significantly enhance mobility infrastructures and operational systems within smart cities. To effectively utilize this data, it is essential to accurately match the geolocation data to the road segments. However, this matching is often not trivial due to the low sampling rate and errors exacerbated by multipath effects in urban environments. Traditionally, statistical modeling techniques such as Hidden-Markov models incorporating domain knowledge into the matching process have been extensively used for map-matching tasks. However, rule-based map-matching tasks are noise-sensitive and inefficient in processing large-scale trajectory data. Deep learning techniques directly learn the relationship between observed data and road networks from the data, often without the need for hand-crafted rules or domain knowledge. This renders them an efficient approach for map-matching large-scale datasets and more robust to the noise. This paper introduces a deep-learning model, specifically the transformer-based encoder-decoder model, to perform as a surrogate for offline map-matching algorithms. The encoder-decoder architecture initially encodes the series of noisy GPS points into a representation that automatically captures hidden contextual structures and spatial correlations between GPS points. Subsequently, the decoder associates data points with the road network features and thus transforms these representations into a sequence of road segments. The model is trained and evaluated using GPS traces collected in Manhattan, New York. Achieving an accuracy of 75%, transformer-based encoder-decoder models extensively employed in natural language processing presented a promising performance for translating noisy GPS data to the navigated routes in urban road networks.

15 pages, 10 figures
Gradient-based Trajectory Optimization with Parallelized Differentiable Traffic Simulation 2024-12-21
Show

We present a parallelized differentiable traffic simulator based on the Intelligent Driver Model (IDM), a car-following framework that incorporates driver behavior as key variables. Our simulator efficiently models vehicle motion, generating trajectories that can be supervised to fit real-world data. By leveraging its differentiable nature, IDM parameters are optimized using gradient-based methods. With the capability to simulate up to 2 million vehicles in real time, the system is scalable for large-scale trajectory optimization. We show that we can use the simulator to filter noise in the input trajectories (trajectory filtering), reconstruct dense trajectories from sparse ones (trajectory reconstruction), and predict future trajectories (trajectory prediction), with all generated trajectories adhering to physical laws. We validate our simulator and algorithm on several datasets including NGSIM and Waymo Open Dataset.

8 pag...

8 pages, 6 figures, 2 tables

Choice Between Partial Trajectories: Disentangling Goals from Beliefs 2024-12-21
Show

As AI agents generate increasingly sophisticated behaviors, manually encoding human preferences to guide these agents becomes more challenging. To address this, it has been suggested that agents instead learn preferences from human choice data. This approach requires a model of choice behavior that the agent can use to interpret the data. For choices between partial trajectories of states and actions, previous models assume choice probabilities are determined by the partial return or the cumulative advantage. We consider an alternative model based instead on the bootstrapped return, which adds to the partial return an estimate of the future return. Benefits of the bootstrapped return model stem from its treatment of human beliefs. Unlike partial return, choices based on bootstrapped return reflect human beliefs about the environment. Further, while recovering the reward function from choices based on cumulative advantage requires that those beliefs are correct, doing so from choices based on bootstrapped return does not. To motivate the bootstrapped return model, we formulate axioms and prove an Alignment Theorem. This result formalizes how, for a general class of preferences, such models are able to disentangle goals from beliefs. This ensures recovery of an aligned reward function when learning from choices based on bootstrapped return. The bootstrapped return model also affords greater robustness to choice behavior. Even when choices are based on partial return, learning via a bootstrapped return model recovers an aligned reward function. The same holds with choices based on the cumulative advantage if the human and the agent both adhere to correct and consistent beliefs about the environment. On the other hand, if choices are based on bootstrapped return, learning via partial return or cumulative advantage models does not generally produce an aligned reward function.

Effective and Efficient Representation Learning for Flight Trajectories 2024-12-21
Show

Flight trajectory data plays a vital role in the traffic management community, especially for downstream tasks such as trajectory prediction, flight recognition, and anomaly detection. Existing works often utilize handcrafted features and design models for different tasks individually, which heavily rely on domain expertise and are hard to extend. We argue that different flight analysis tasks share the same useful features of the trajectory. Jointly learning a unified representation for flight trajectories could be beneficial for improving the performance of various tasks. However, flight trajectory representation learning (TRL) faces two primary challenges, \ie unbalanced behavior density and 3D spatial continuity, which disable recent general TRL methods. In this paper, we propose Flight2Vec , a flight-specific representation learning method to address these challenges. Specifically, a behavior-adaptive patching mechanism is used to inspire the learned representation to pay more attention to behavior-dense segments. Moreover, we introduce a motion trend learning technique that guides the model to memorize not only the precise locations, but also the motion trend to generate better representations. Extensive experimental results demonstrate that Flight2Vec significantly improves performance in downstream tasks such as flight trajectory prediction, flight recognition, and anomaly detection.

Accep...

Accepted by AAAI 2025

Recurrent Aligned Network for Generalized Pedestrian Trajectory Prediction 2024-12-21
Show

Pedestrian trajectory prediction is a crucial component in computer vision and robotics, but remains challenging due to the domain shift problem. Previous studies have tried to tackle this problem by leveraging a portion of the trajectory data from the target domain to adapt the model. However, such domain adaptation methods are impractical in real-world scenarios, as it is infeasible to collect trajectory data from all potential target domains. In this paper, we study a task named generalized pedestrian trajectory prediction, with the aim of generalizing the model to unseen domains without accessing their trajectories. To tackle this task, we introduce a Recurrent Aligned Network~(RAN) to minimize the domain gap through domain alignment. Specifically, we devise a recurrent alignment module to effectively align the trajectory feature spaces at both time-state and time-sequence levels by the recurrent alignment strategy.Furthermore, we introduce a pre-aligned representation module to combine social interactions with the recurrent alignment strategy, which aims to consider social interactions during the alignment process instead of just target trajectories. We extensively evaluate our method and compare it with state-of-the-art methods on three widely used benchmarks. The experimental results demonstrate the superior generalization capability of our method. Our work not only fills the gap in the generalization setting for practical pedestrian trajectory prediction but also sets strong baselines in this field.

In-Dataset Trajectory Return Regularization for Offline Preference-based Reinforcement Learning 2024-12-21
Show

Offline preference-based reinforcement learning (PbRL) typically operates in two phases: first, use human preferences to learn a reward model and annotate rewards for a reward-free offline dataset; second, learn a policy by optimizing the learned reward via offline RL. However, accurately modeling step-wise rewards from trajectory-level preference feedback presents inherent challenges. The reward bias introduced, particularly the overestimation of predicted rewards, leads to optimistic trajectory stitching, which undermines the pessimism mechanism critical to the offline RL phase. To address this challenge, we propose In-Dataset Trajectory Return Regularization (DTR) for offline PbRL, which leverages conditional sequence modeling to mitigate the risk of learning inaccurate trajectory stitching under reward bias. Specifically, DTR employs Decision Transformer and TD-Learning to strike a balance between maintaining fidelity to the behavior policy with high in-dataset trajectory returns and selecting optimal actions based on high reward labels. Additionally, we introduce an ensemble normalization technique that effectively integrates multiple reward models, balancing the tradeoff between reward differentiation and accuracy. Empirical evaluations on various benchmarks demonstrate the superiority of DTR over other state-of-the-art baselines.

20 pa...

20 pages, Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI-25)

Using Clarke Transform to Create a Framework on the Manifold: From Sampling via Trajectory Generation to Control 2024-12-21
Show

We present a framework based on Clarke coordinates for spatial displacement-actuated continuum robots with an arbitrary number of joints. This framework consists of three modular components, i.e., a planner, trajectory generator, and controller defined on the manifold. All components are computationally efficient, compact, and branchless, and an encoder can be used to interface existing framework components that are not based on Clarke coordinates. We derive the relationship between the kinematic constraints in the joint space and on the manifold to generate smooth trajectories on the manifold. Furthermore, we establish the connection between the displacement constraint and parallel curves. To demonstrate its effectiveness, a demonstration in simulation for a displacement-actuated continuum robot with four segments is presented.

8 pag...

8 pages, 10 figures, and 1 table

Traffic-Rule-Compliant Trajectory Repair via Satisfiability Modulo Theories and Reachability Analysis 2024-12-20
Show

Complying with traffic rules is challenging for automated vehicles, as numerous rules need to be considered simultaneously. If a planned trajectory violates traffic rules, it is common to replan a new trajectory from scratch. We instead propose a trajectory repair technique to save computation time. By coupling satisfiability modulo theories with set-based reachability analysis, we determine if and in what manner the initial trajectory can be repaired. Experiments in high-fidelity simulators and in the real world demonstrate the benefits of our proposed approach in various scenarios. Even in complex environments with intricate rules, we efficiently and reliably repair rule-violating trajectories, enabling automated vehicles to swiftly resume legally safe operation in real-time.

2024 ...

2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Learning Group Interactions and Semantic Intentions for Multi-Object Trajectory Prediction 2024-12-20
Show

Effective modeling of group interactions and dynamic semantic intentions is crucial for forecasting behaviors like trajectories or movements. In complex scenarios like sports, agents' trajectories are influenced by group interactions and intentions, including team strategies and opponent actions. To this end, we propose a novel diffusion-based trajectory prediction framework that integrates group-level interactions into a conditional diffusion model, enabling the generation of diverse trajectories aligned with specific group activity. To capture dynamic semantic intentions, we frame group interaction prediction as a cooperative game, using Banzhaf interaction to model cooperation trends. We then fuse semantic intentions with enhanced agent embeddings, which are refined through both global and local aggregation. Furthermore, we expand the NBA SportVU dataset by adding human annotations of team-level tactics for trajectory and tactic prediction tasks. Extensive experiments on three widely-adopted datasets demonstrate that our model outperforms state-of-the-art methods. Our source code and data are available at https://github.com/aurora-xin/Group2Int-trajectory.

AdaFold: Adapting Folding Trajectories of Cloths via Feedback-loop Manipulation 2024-12-20
Show

We present AdaFold, a model-based feedback-loop framework for optimizing folding trajectories. AdaFold extracts a particle-based representation of cloth from RGB-D images and feeds back the representation to a model predictive control to replan folding trajectory at every time step. A key component of AdaFold that enables feedback-loop manipulation is the use of semantic descriptors extracted from geometric features. These descriptors enhance the particle representation of the cloth to distinguish between ambiguous point clouds of differently folded cloths. Our experiments demonstrate AdaFold's ability to adapt folding trajectories of cloths with varying physical properties and generalize from simulated training to real-world execution.

8 pag...

8 pages, 6 figures, 5 tables

Offline Safe Reinforcement Learning Using Trajectory Classification 2024-12-19
Show

Offline safe reinforcement learning (RL) has emerged as a promising approach for learning safe behaviors without engaging in risky online interactions with the environment. Most existing methods in offline safe RL rely on cost constraints at each time step (derived from global cost constraints) and this can result in either overly conservative policies or violation of safety constraints. In this paper, we propose to learn a policy that generates desirable trajectories and avoids undesirable trajectories. To be specific, we first partition the pre-collected dataset of state-action trajectories into desirable and undesirable subsets. Intuitively, the desirable set contains high reward and safe trajectories, and undesirable set contains unsafe trajectories and low-reward safe trajectories. Second, we learn a policy that generates desirable trajectories and avoids undesirable trajectories, where (un)desirability scores are provided by a classifier learnt from the dataset of desirable and undesirable trajectories. This approach bypasses the computational complexity and stability issues of a min-max objective that is employed in existing methods. Theoretically, we also show our approach's strong connections to existing learning paradigms involving human feedback. Finally, we extensively evaluate our method using the DSRL benchmark for offline safe RL. Empirically, our method outperforms competitive baselines, achieving higher rewards and better constraint satisfaction across a wide variety of benchmark tasks.

AAAI 2025
LeviTor: 3D Trajectory Oriented Image-to-Video Synthesis 2024-12-19
Show

The intuitive nature of drag-based interaction has led to its growing adoption for controlling object trajectories in image-to-video synthesis. Still, existing methods that perform dragging in the 2D space usually face ambiguity when handling out-of-plane movements. In this work, we augment the interaction with a new dimension, i.e., the depth dimension, such that users are allowed to assign a relative depth for each point on the trajectory. That way, our new interaction paradigm not only inherits the convenience from 2D dragging, but facilitates trajectory control in the 3D space, broadening the scope of creativity. We propose a pioneering method for 3D trajectory control in image-to-video synthesis by abstracting object masks into a few cluster points. These points, accompanied by the depth information and the instance information, are finally fed into a video diffusion model as the control signal. Extensive experiments validate the effectiveness of our approach, dubbed LeviTor, in precisely manipulating the object movements when producing photo-realistic videos from static images. Project page: https://ppetrichor.github.io/levitor.github.io/

Proje...

Project page available at https://ppetrichor.github.io/levitor.github.io/

STRAP: Robot Sub-Trajectory Retrieval for Augmented Policy Learning 2024-12-19
Show

Robot learning is witnessing a significant increase in the size, diversity, and complexity of pre-collected datasets, mirroring trends in domains such as natural language processing and computer vision. Many robot learning methods treat such datasets as multi-task expert data and learn a multi-task, generalist policy by training broadly across them. Notably, while these generalist policies can improve the average performance across many tasks, the performance of generalist policies on any one task is often suboptimal due to negative transfer between partitions of the data, compared to task-specific specialist policies. In this work, we argue for the paradigm of training policies during deployment given the scenarios they encounter: rather than deploying pre-trained policies to unseen problems in a zero-shot manner, we non-parametrically retrieve and train models directly on relevant data at test time. Furthermore, we show that many robotics tasks share considerable amounts of low-level behaviors and that retrieval at the "sub"-trajectory granularity enables significantly improved data utilization, generalization, and robustness in adapting policies to novel problems. In contrast, existing full-trajectory retrieval methods tend to underutilize the data and miss out on shared cross-task content. This work proposes STRAP, a technique for leveraging pre-trained vision foundation models and dynamic time warping to retrieve sub-sequences of trajectories from large training corpora in a robust fashion. STRAP outperforms both prior retrieval algorithms and multi-task learning methods in simulated and real experiments, showing the ability to scale to much larger offline datasets in the real world as well as the ability to learn robust control policies with just a handful of real-world demonstrations.

Proje...

Project website at https://weirdlabuw.github.io/strap/

Tracing the Roots: Leveraging Temporal Dynamics in Diffusion Trajectories for Origin Attribution 2024-12-19
Show

Diffusion models have revolutionized image synthesis, garnering significant research interest in recent years. Diffusion is an iterative algorithm in which samples are generated step-by-step, starting from pure noise. This process introduces the notion of diffusion trajectories, i.e., paths from the standard Gaussian distribution to the target image distribution. In this context, we study discriminative algorithms operating on these trajectories. Specifically, given a pre-trained diffusion model, we consider the problem of classifying images as part of the training dataset, generated by the model or originating from an external source. Our approach demonstrates the presence of patterns across steps that can be leveraged for classification. We also conduct ablation studies, which reveal that using higher-order gradient features to characterize the trajectories leads to significant performance gains and more robust algorithms.

Multi-Agent Trajectory Prediction with Difficulty-Guided Feature Enhancement Network 2024-12-19
Show

Trajectory prediction is crucial for autonomous driving as it aims to forecast the future movements of traffic participants. Traditional methods usually perform holistic inference on the trajectories of agents, neglecting the differences in prediction difficulty among agents. This paper proposes a novel Difficulty-Guided Feature Enhancement Network (DGFNet), which leverages the prediction difficulty differences among agents for multi-agent trajectory prediction. Firstly, we employ spatio-temporal feature encoding and interaction to capture rich spatio-temporal features. Secondly, a difficulty-guided decoder controls the flow of future trajectories into subsequent modules, obtaining reliable future trajectories. Then, feature interaction and fusion are performed through the future feature interaction module. Finally, the fused agent features are fed into the final predictor to generate the predicted trajectory distributions for multiple participants. Experimental results demonstrate that our DGFNet achieves state-of-the-art performance on the Argoverse 1&2 motion forecasting benchmarks. Ablation studies further validate the effectiveness of each module. Moreover, compared with SOTA methods, our method balances trajectory prediction accuracy and real-time inference speed.

High-Accuracy Model Predictive Control with Inverse Hysteresis for High-Speed Trajectory Tracking of Piezoelectric Fast Steering Mirror 2024-12-19
Show

Piezoelectric fast steering mirrors (PFSM) are widely utilized in beam precision-pointing systems but encounter considerable challenges in achieving high-precision tracking of fast trajectories due to nonlinear hysteresis and mechanical dual-axis cross-coupling. This paper proposes a model predictive control (MPC) approach integrated with a hysteresis inverse based on the Hammerstein modeling structure of the PFSM. The MPC is designed to decouple the rate-dependent dual-axis linear components, with an augmented error integral variable introduced in the state space to eliminate steady-state errors. Moreover, proofs of zero steady-state error and disturbance rejection are provided. The hysteresis inverse model is then cascaded to compensate for the rate-independent nonlinear components. Finally, PFSM tracking experiments are conducted on step, sinusoidal, triangular, and composite trajectories. Compared to traditional model-free and existing model-based controllers, the proposed method significantly enhances tracking accuracy, demonstrating superior tracking performance and robustness to frequency variations. These results offer valuable insights for engineering applications.

EPN: An Ego Vehicle Planning-Informed Network for Target Trajectory Prediction 2024-12-19
Show

Trajectory prediction plays a crucial role in improving the safety and reliability of autonomous vehicles, serving as an intermediate link between perception and planning. However, due to the highly dynamic and multimodal nature of the task, accurately predicting the future trajectory of a target vehicle remains a significant challenge. To address these challenges, we propose an Ego vehicle Planning-informed Network (EPN) for multimodal trajectory prediction. Current trajectory prediction methods typically use the historical trajectory and vehicle attributes as inputs, focusing primarily on how historical information influences the future trajectory of the target vehicle. In real-world driving scenarios, however, the future trajectory of a vehicle is influenced not only by its own historical data but also by the behavior of other vehicles on the road. To address this, we incorporate the future planned trajectory of the ego vehicle as an additional input to simulate the mutual influence between the ego vehicle's planned trajectory and the predicted trajectory of the target vehicle. Furthermore, to tackle the challenges of intention ambiguity and large prediction errors often encountered in methods based on driving intentions, we propose a target's endpoint prediction module. This module first predicts the possible endpoints of the target vehicle, then refines these predictions through a correction mechanism, and finally generates a complete multimodal predicted trajectory based on the corrected endpoints. Experimental results demonstrate that, compared to other trajectory prediction methods, EPN achieves an average reduction of 34.9%, 30.7%, and 30.4% in RMSE, ADE, and FDE evaluation metrics on the NGSIM dataset, and an average reduction of 64.6%, 64.5%, and 64.3% in RMSE, ADE, and FDE on the HighD dataset. These results highlight the strong performance of EPN in trajectory prediction.

REVECA: Adaptive Planning and Trajectory-based Validation in Cooperative Language Agents using Information Relevance and Relative Proximity 2024-12-18
Show

We address the challenge of multi-agent cooperation, where agents achieve a common goal by cooperating with decentralized agents under complex partial observations. Existing cooperative agent systems often struggle with efficiently processing continuously accumulating information, managing globally suboptimal planning due to lack of consideration of collaborators, and addressing false planning caused by environmental changes introduced by other collaborators. To overcome these challenges, we propose the RElevance, Proximity, and Validation-Enhanced Cooperative Language Agent (REVECA), a novel cognitive architecture powered by GPT-4o-mini. REVECA enables efficient memory management, optimal planning, and cost-effective prevention of false planning by leveraging Relevance Estimation, Adaptive Planning, and Trajectory-based Validation. Extensive experimental results demonstrate REVECA's superiority over existing methods across various benchmarks, while a user study reveals its potential for achieving trustworthy human-AI cooperation.

v2 is...

v2 is the AAAI'25 camera-ready version, including the appendix, which has been enhanced based on the reviewers' comments

Disease Progression Modelling and Stratification for detecting sub-trajectories in the natural history of pathologies: application to Parkinson's Disease trajectory modelling 2024-12-18
Show

Modelling the progression of Degenerative Diseases (DD) is essential for detection, prevention, and treatment, yet it remains challenging due to the heterogeneity in disease trajectories among individuals. Factors such as demographics, genetic conditions, and lifestyle contribute to diverse phenotypical manifestations, necessitating patient stratification based on these variations. Recent methods like Subtype and Stage Inference (SuStaIn) have advanced unsupervised stratification of disease trajectories, but they face potential limitations in robustness, interpretability, and temporal granularity. To address these challenges, we introduce Disease Progression Modelling and Stratification (DP-MoSt), a novel probabilistic method that optimises clusters of continuous trajectories over a long-term disease time-axis while estimating the confidence of trajectory sub-types for each biomarker. We validate DP-MoSt using both synthetic and real-world data from the Parkinson's Progression Markers Initiative (PPMI). Our results demonstrate that DP-MoSt effectively identifies both sub-trajectories and subpopulations, and is a promising alternative to current state-of-the-art models.

Longi...

Longitudinal Disease Tracking and Modelling with Medical Images and Data, Oct 2024, Marrachech, Morocco

Exploring Transformer-Augmented LSTM for Temporal and Spatial Feature Learning in Trajectory Prediction 2024-12-18
Show

Accurate vehicle trajectory prediction is crucial for ensuring safe and efficient autonomous driving. This work explores the integration of Transformer based model with Long Short-Term Memory (LSTM) based technique to enhance spatial and temporal feature learning in vehicle trajectory prediction. Here, a hybrid model that combines LSTMs for temporal encoding with a Transformer encoder for capturing complex interactions between vehicles is proposed. Spatial trajectory features of the neighboring vehicles are processed and goes through a masked scatter mechanism in a grid based environment, which is then combined with temporal trajectory of the vehicles. This combined trajectory data are learned by sequential LSTM encoding and Transformer based attention layers. The proposed model is benchmarked against predecessor LSTM based methods, including STA-LSTM, SA-LSTM, CS-LSTM, and NaiveLSTM. Our results, while not outperforming it's predecessor, demonstrate the potential of integrating Transformers with LSTM based technique to build interpretable trajectory prediction model. Future work will explore alternative architectures using Transformer applications to further enhance performance. This study provides a promising direction for improving trajectory prediction models by leveraging transformer based architectures, paving the way for more robust and interpretable vehicle trajectory prediction system.

Safe Trajectory Sets for Online Operation of Power Systems under Uncertainty 2024-12-17
Show

Flexibility provision from active distribution grids requires efficient and robust methods of optimization and control suitable to online operation. In this paper we introduce conditions for the safe operation of feedback optimization based controllers. We use the feasible operating region of a controlled system as bounds for safe system states and evaluate the trajectories of the controller based on the projection of the full system state onto the two-dimensional PQ-plane. We demonstrate the defined conditions for an exemplary sub-transmission system. We show that the proposed method is suitable to evaluate controller performance and robustness for systems subject to disturbances.

Multi-UAV Collaborative Trajectory Planning for Seamless Data Collection and Transmission 2024-12-17
Show

Unmanned aerial vehicles (UAVs) have attracted plenty of attention due to their high flexibility and enhanced communication ability. However, the limited coverage and energy of UAVs make it difficult to provide timely wireless service for large-scale sensor networks, which also exist in multiple UAVs. To this end, the advanced collaboration mechanism of UAVs urgently needs to be designed. In this paper, we propose a multi-UAV collaborative scheme for seamless data collection and transmission, where UAVs are dispatched to collection points (CPs) to collect and transmit the time-critical data to the ground base station (BS) simultaneously through the cooperative backhaul link. Specifically, the mission completion time is minimized by optimizing the trajectories, task allocation, collection time scheduling, and transmission topology of UAVs while ensuring backhaul link to the BS. However, the formulated problem is non-convex and challenging to solve directly. To tackle this problem, the CP locations and transmission topology of UAVs are obtained by sensor node (SN) clustering and region division. Next, the transmission connectivity condition between UAVs is derived to facilitate the trajectory discretization and thus reduce the dimensions of variables. This simplifies the problem to optimizing the UAV hovering locations, hovering time, and CP serving sequence. Then, we propose a point-matching-based trajectory planning algorithm to solve the problem efficiently. The simulation results show that the proposed scheme achieves significant performance gains over the two benchmarks.

6 pag...

6 pages, 3 figures, submitted to WCNC Workshop 2025

Rapid and Robust Trajectory Optimization for Humanoids 2024-12-16
Show

Performing trajectory design for humanoid robots with high degrees of freedom is computationally challenging. The trajectory design process also often involves carefully selecting various hyperparameters and requires a good initial guess which can further complicate the development process. This work introduces a generalized gait optimization framework that directly generates smooth and physically feasible trajectories. The proposed method demonstrates faster and more robust convergence than existing techniques and explicitly incorporates closed-loop kinematic constraints that appear in many modern humanoids. The method is implemented as an open-source C++ codebase which can be found at https://roahmlab.github.io/RAPTOR/.

Deep-learning-based identification of individual motion characteristics from upper-limb trajectories towards disorder stage evaluation 2024-12-16
Show

The identification of individual movement characteristics sets the foundation for the assessment of personal rehabilitation progress and can provide diagnostic information on levels and stages of movement disorders. This work presents a preliminary study for differentiating individual motion patterns using a dataset of 3D upper-limb transport trajectories measured in task-space. Identifying individuals by deep time series learning can be a key step to abstracting individual motion properties. In this study, a classification accuracy of about 95% is reached for a subset of nine, and about 78% for the full set of 31 individuals. This provides insights into the separability of patient attributes by exerting a simple standardized task to be transferred to portable systems.

Efficient LiDAR Bundle Adjustment for Multi-Scan Alignment Utilizing Continuous-Time Trajectories 2024-12-16
Show

Constructing precise global maps is a key task in robotics and is required for localization, surveying, monitoring, or constructing digital twins. To build accurate maps, data from mobile 3D LiDAR sensors is often used. Mapping requires correctly aligning the individual point clouds to each other to obtain a globally consistent map. In this paper, we investigate the problem of multi-scan alignment to obtain globally consistent point cloud maps. We propose a 3D LiDAR bundle adjustment approach to solve the global alignment problem and jointly optimize the available data. Utilizing a continuous-time trajectory allows us to consider the ego-motion of the LiDAR scanner while recording a single scan directly in the least squares adjustment. Furthermore, pruning the search space of correspondences and utilizing out-of-core circular buffer enables our approach to align thousands of point clouds efficiently. We successfully align point clouds recorded with a handheld LiDAR, as well as ones mounted on a vehicle, and are able to perform multi-session alignment.

Submi...

Submitted to ICRA 2025

NEST: A Neuromodulated Small-world Hypergraph Trajectory Prediction Model for Autonomous Driving 2024-12-16
Show

Accurate trajectory prediction is essential for the safety and efficiency of autonomous driving. Traditional models often struggle with real-time processing, capturing non-linearity and uncertainty in traffic environments, efficiency in dense traffic, and modeling temporal dynamics of interactions. We introduce NEST (Neuromodulated Small-world Hypergraph Trajectory Prediction), a novel framework that integrates Small-world Networks and hypergraphs for superior interaction modeling and prediction accuracy. This integration enables the capture of both local and extended vehicle interactions, while the Neuromodulator component adapts dynamically to changing traffic conditions. We validate the NEST model on several real-world datasets, including nuScenes, MoCAD, and HighD. The results consistently demonstrate that NEST outperforms existing methods in various traffic scenarios, showcasing its exceptional generalization capability, efficiency, and temporal foresight. Our comprehensive evaluation illustrates that NEST significantly improves the reliability and operational efficiency of autonomous driving systems, making it a robust solution for trajectory prediction in complex traffic environments.

Accepted by AAAI-25
Poisson Multi-Bernoulli Mixtures for Sets of Trajectories 2024-12-15
Show

The Poisson Multi-Bernoulli Mixture (PMBM) density is a conjugate multi-target density for the standard point target model with Poisson point process birth. This means that both the filtering and predicted densities for the set of targets are PMBM. In this paper, we first show that the PMBM density is also conjugate for sets of trajectories with the standard point target measurement model. Second, based on this theoretical foundation, we develop two trajectory PMBM filters that provide recursions to calculate the posterior density for the set of all trajectories that have ever been present in the surveillance area, and the posterior density of the set of trajectories present at the current time step in the surveillance area. These two filters therefore provide complete probabilistic information on the considered trajectories enabling optimal trajectory estimation. Third, we establish that the density of the set of trajectories in any time window, given the measurements in a possibly different time window, is also a PMBM. Finally, the trajectory PMBM filters are evaluated via simulations, and are shown to yield state-of-the-art performance compared to other multi-target tracking algorithms based on random finite sets and multiple hypothesis tracking.

accep...

accepted in IEEE Transactions on Aerospace and Electronic Systems. Matlab code of trajectory PMBM filters can be found at https://github.com/Agarciafernandez and https://github.com/yuhsuansia

Economic MPC with an Online Reference Trajectory for Battery Scheduling Considering Demand Charge Management 2024-12-14
Show

Monthly demand charges form a significant portion of the electric bill for microgrids with variable renewable energy generation. A battery energy storage system (BESS) is commonly used to manage these demand charges. Economic model predictive control (EMPC) with a reference trajectory can be used to dispatch the BESS to optimize the microgrid operating cost. Since demand charges are incurred monthly, EMPC requires a full-month reference trajectory for asymptotic stability guarantees that result in optimal operating costs. However, a full-month reference trajectory is unrealistic from a renewable generation forecast perspective. Therefore, to construct a practical EMPC with a reference trajectory, an EMPC formulation considering both non-coincident demand and on-peak demand charges is designed in this work for 24 to 48 h prediction horizons. The corresponding reference trajectory is computed at each EMPC step by solving an optimal control problem over 24 to 48 h reference (trajectory) horizon. Furthermore, BESS state of charge regulation constraints are incorporated to guarantee the BESS energy level in the long term. Multiple reference and prediction horizon lengths are compared for both shrinking and rolling horizons with real-world data. The proposed EMPC with 48 h rolling reference and prediction horizons outperforms the traditional EMPC benchmark with a 2% reduction in the annual cost, proving its economic benefits.

13 pa...

13 pages, 6 figures, 2 tables, Submitted to IEEE Transactions on Smart Grid

SHIFT Planner: Speedy Hybrid Iterative Field and Segmented Trajectory Optimization with IKD-tree for Uniform Lightweight Coverage 2024-12-14
Show

This paper introduces a comprehensive planning and navigation framework that address these limitations by integrating semantic mapping, adaptive coverage planning, dynamic obstacle avoidance and precise trajectory tracking. Our framework begins by generating panoptic occupancy local semantic maps and accurate localization information from data aligned between a monocular camera, IMU, and GPS. This information is combined with input terrain point clouds or preloaded terrain information to initialize the planning process. We propose the Radiant Field-Informed Coverage Planning algorithm, which utilizes a diffusion field model to dynamically adjust the robot's coverage trajectory and speed based on environmental attributes such as dirtiness and dryness. By modeling the spatial influence of the robot's actions using a Gaussian field, ensures a speed-optimized, uniform coverage trajectory while adapting to varying environmental conditions.

Toy-GS: Assembling Local Gaussians for Precisely Rendering Large-Scale Free Camera Trajectories 2024-12-13
Show

Currently, 3D rendering for large-scale free camera trajectories, namely, arbitrary input camera trajectories, poses significant challenges: 1) The distribution and observation angles of the cameras are irregular, and various types of scenes are included in the free trajectories; 2) Processing the entire point cloud and all images at once for large-scale scenes requires a substantial amount of GPU memory. This paper presents a Toy-GS method for accurately rendering large-scale free camera trajectories. Specifically, we propose an adaptive spatial division approach for free trajectories to divide cameras and the sparse point cloud of the entire scene into various regions according to camera poses. Training each local Gaussian in parallel for each area enables us to concentrate on texture details and minimize GPU memory usage. Next, we use the multi-view constraint and position-aware point adaptive control (PPAC) to improve the rendering quality of texture details. In addition, our regional fusion approach combines local and global Gaussians to enhance rendering quality with an increasing number of divided areas. Extensive experiments have been carried out to confirm the effectiveness and efficiency of Toy-GS, leading to state-of-the-art results on two public large-scale datasets as well as our SCUTic dataset. Our proposal demonstrates an enhancement of 1.19 dB in PSNR and conserves 7 G of GPU memory when compared to various benchmarks.

AgentTrek: Agent Trajectory Synthesis via Guiding Replay with Web Tutorials 2024-12-12
Show

Graphical User Interface (GUI) agents hold great potential for automating complex tasks across diverse digital environments, from web applications to desktop software. However, the development of such agents is hindered by the lack of high-quality, multi-step trajectory data required for effective training. Existing approaches rely on expensive and labor-intensive human annotation, making them unsustainable at scale. To address this challenge, we propose AgentTrek, a scalable data synthesis pipeline that generates high-quality GUI agent trajectories by leveraging web tutorials. Our method automatically gathers tutorial-like texts from the internet, transforms them into task goals with step-by-step instructions, and employs a visual-language model agent to simulate their execution in a real digital environment. A VLM-based evaluator ensures the correctness of the generated trajectories. We demonstrate that training GUI agents with these synthesized trajectories significantly improves their grounding and planning performance over the current models. Moreover, our approach is more cost-efficient compared to traditional human annotation methods. This work underscores the potential of guided replay with web tutorials as a viable strategy for large-scale GUI agent training, paving the way for more capable and autonomous digital agents.

https...

https://agenttrek.github.io

Slope Considered Online Nonlinear Trajectory Planning with Differential Energy Model for Autonomous Driving 2024-12-12
Show

Achieving energy-efficient trajectory planning for autonomous driving remains a challenge due to the limitations of model-agnostic approaches. This study addresses this gap by introducing an online nonlinear programming trajectory optimization framework that integrates a differentiable energy model into autonomous systems. By leveraging traffic and slope profile predictions within a safety-critical framework, the proposed method enhances fuel efficiency for both sedans and diesel trucks by 3.71% and 7.15%, respectively, when compared to traditional model-agnostic quadratic programming techniques. These improvements translate to a potential $6.14 billion economic benefit for the U.S. trucking industry. This work bridges the gap between model-agnostic autonomous driving and model-aware ECO-driving, highlighting a practical pathway for integrating energy efficiency into real-time trajectory planning.

Robot Agnostic Visual Servoing considering kinematic constraints enabled by a decoupled network trajectory planner structure 2024-12-12
Show

We propose a visual servoing method consisting of a detection network and a velocity trajectory planner. First, the detection network estimates the objects position and orientation in the image space. Furthermore, these are normalized and filtered. The direction and orientation is then the input to the trajectory planner, which considers the kinematic constrains of the used robotic system. This allows safe and stable control, since the kinematic boundary values are taken into account in planning. Also, by having direction estimation and velocity planner separated, the learning part of the method does not directly influence the control value. This also enables the transfer of the method to different robotic systems without retraining, therefore being robot agnostic. We evaluate our method on different visual servoing tasks with and without clutter on two different robotic systems. Our method achieved mean absolute position errors of <0.5 mm and orientation errors of <1{\deg}. Additionally, we transferred the method to a new system which differs in robot and camera, emphasizing robot agnostic capability of our method.

\copy...

\copyright 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Temporal-Assisted Beamforming and Trajectory Prediction in Sensing-Enabled UAV Communications 2024-12-12
Show

In the evolving landscape of high-speed communication, the shift from traditional pilot-based methods to a Sensing-Oriented Approach (SOA) is anticipated to gain momentum. This paper delves into the development of an innovative Integrated Sensing and Communication (ISAC) framework, specifically tailored for beamforming and trajectory prediction processes. Central to this research is the exploration of an Unmanned Aerial Vehicle (UAV)-enabled communication system, which seamlessly integrates ISAC technology. This integration underscores the synergistic interplay between sensing and communication capabilities. The proposed system initially deploys omnidirectional beams for the sensing-focused phase, subsequently transitioning to directional beams for precise object tracking. This process incorporates an Extended Kalman Filtering (EKF) methodology for the accurate estimation and prediction of object states. A novel frame structure is introduced, employing historical sensing data to optimize beamforming in real-time for subsequent time slots, a strategy we refer to as 'temporal-assisted' beamforming. To refine the temporal-assisted beamforming technique, we employ Successive Convex Approximation (SCA) in tandem with Iterative Rank Minimization (IRM), yielding high-quality suboptimal solutions. Comparative analysis with conventional pilot-based systems reveals that our approach yields a substantial improvement of 156% in multi-object scenarios and 136% in single-object scenarios.

Mojito: Motion Trajectory and Intensity Control for Video Generation 2024-12-12
Show

Recent advancements in diffusion models have shown great promise in producing high-quality video content. However, efficiently training diffusion models capable of integrating directional guidance and controllable motion intensity remains a challenging and under-explored area. This paper introduces Mojito, a diffusion model that incorporates both \textbf{Mo}tion tra\textbf{j}ectory and \textbf{i}ntensi\textbf{t}y contr\textbf{o}l for text to video generation. Specifically, Mojito features a Directional Motion Control module that leverages cross-attention to efficiently direct the generated object's motion without additional training, alongside a Motion Intensity Modulator that uses optical flow maps generated from videos to guide varying levels of motion intensity. Extensive experiments demonstrate Mojito's effectiveness in achieving precise trajectory and intensity control with high computational efficiency, generating motion patterns that closely match specified directions and intensities, providing realistic dynamics that align well with natural motion in real-world scenarios.

From Text to Trajectory: Exploring Complex Constraint Representation and Decomposition in Safe Reinforcement Learning 2024-12-12
Show

Safe reinforcement learning (RL) requires the agent to finish a given task while obeying specific constraints. Giving constraints in natural language form has great potential for practical scenarios due to its flexible transfer capability and accessibility. Previous safe RL methods with natural language constraints typically need to design cost functions manually for each constraint, which requires domain expertise and lacks flexibility. In this paper, we harness the dual role of text in this task, using it not only to provide constraint but also as a training signal. We introduce the Trajectory-level Textual Constraints Translator (TTCT) to replace the manually designed cost function. Our empirical results demonstrate that TTCT effectively comprehends textual constraint and trajectory, and the policies trained by TTCT can achieve a lower violation rate than the standard cost function. Extra studies are conducted to demonstrate that the TTCT has zero-shot transfer capability to adapt to constraint-shift environments.

Accep...

Accepted by NeurIPS 2024

Towards modeling evolving longitudinal health trajectories with a transformer-based deep learning model 2024-12-12
Show

Health registers contain rich information about individuals' health histories. Here our interest lies in understanding how individuals' health trajectories evolve in a nationwide longitudinal dataset with coded features, such as clinical codes, procedures, and drug purchases. We introduce a straightforward approach for training a Transformer-based deep learning model in a way that lets us analyze how individuals' trajectories change over time. This is achieved by modifying the training objective and by applying a causal attention mask. We focus here on a general task of predicting the onset of a range of common diseases in a given future forecast interval. However, instead of providing a single prediction about diagnoses that could occur in this forecast interval, our approach enable the model to provide continuous predictions at every time point up until, and conditioned on, the time of the forecast period. We find that this model performs comparably to other models, including a bi-directional transformer model, in terms of basic prediction performance while at the same time offering promising trajectory modeling properties. We explore a couple of ways to use this model for analyzing health trajectories and aiding in early detection of events that forecast possible later disease onsets. We hypothesize that this method may be helpful in continuous monitoring of peoples' health trajectories and enabling interventions in ongoing health trajectories, as well as being useful in retrospective analyses.

Labits: Layered Bidirectional Time Surfaces Representation for Event Camera-based Continuous Dense Trajectory Estimation 2024-12-12
Show

Event cameras provide a compelling alternative to traditional frame-based sensors, capturing dynamic scenes with high temporal resolution and low latency. Moving objects trigger events with precise timestamps along their trajectory, enabling smooth continuous-time estimation. However, few works have attempted to optimize the information loss during event representation construction, imposing a ceiling on this task. Fully exploiting event cameras requires representations that simultaneously preserve fine-grained temporal information, stable and characteristic 2D visual features, and temporally consistent information density, an unmet challenge in existing representations. We introduce Labits: Layered Bidirectional Time Surfaces, a simple yet elegant representation designed to retain all these features. Additionally, we propose a dedicated module for extracting active pixel local optical flow (APLOF), significantly boosting the performance. Our approach achieves an impressive 49% reduction in trajectory end-point error (TEPE) compared to the previous state-of-the-art on the MultiFlow dataset. The code will be released upon acceptance.

24 pa...

24 pages, 12 figures, 9 tables

EMATO: Energy-Model-Aware Trajectory Optimization for Autonomous Driving 2024-12-12
Show

Autonomous driving lacks strong proof of energy efficiency with the energy-model-agnostic trajectory planning. To achieve an energy consumption model-aware trajectory planning for autonomous driving, this study proposes an online nonlinear programming method that optimizes the polynomial trajectories generated by the Frenet polynomial method while considering both traffic trajectories and road slope prediction. This study further investigates how the energy model can be leveraged in different driving conditions to achieve higher energy efficiency. Case studies, quantitative studies, and ablation studies are conducted in a sedan and truck model to prove the effectiveness of the method.

Advancing Operational Efficiency: Airspace Users' Perspective on Trajectory-Based Operations 2024-12-11
Show

This work explores the evolution of the Flight Operations Center (FOC) and flight trajectory exchange tools within Trajectory-Based Operations (TBO), emphasizing the benefits of the ICAO's Flight and Flow Information for a Collaborative Environment (FF-ICE) messaging framework and Electronic Flight Bags (EFBs). It highlights the collaborative management of four-dimensional flight trajectories, serving as a common reference for decision-making among stakeholders, including Air Navigation Service Providers (ANSPs), airspace users, and airport operators. Key enabling technologies such as Performance Based Navigation (PBN), data communications, and System-wide Information Management (SWIM) are discussed, showcasing their roles in rapid information exchange and trajectory optimization. A live flight case study demonstrates TBO concepts through international collaboration, indicating significant improvements in safety, efficiency, and sustainability. The paper presents results from TBO prototype implementations, including enhanced trajectory accuracy, improved flight path efficiency, and real-time adjustments based on evolving conditions. The integration of advanced trajectory optimization engines and automation within the FOC has led to more effective flight planning, allowing airlines to negotiate trajectory changes dynamically and optimize operations throughout the flight lifecycle. Findings suggest that TBO can enhance operational predictability, flexibility, and strategic planning while reducing uncertainty and improving alignment between strategic and tactical actions. Key conclusions include: TBO is feasible with most currently flying commercial aircraft; full TBO implementation can lead to a greener, more efficient aviation industry with widespread benefits; and continued collaboration among stakeholders is essential for the further development and realization of TBO.

Submi...

Submitted to 25th Integrated Communications, Navigation and Surveillance Conference (ICNS), April 8-10, 2025, Brussels

Real-Time Trajectory Generation for Soft Robot Manipulators Using Differential Flatness 2024-12-11
Show

Soft robots have the potential to interact with sensitive environments and perform complex tasks effectively. However, motion plans and trajectories for soft manipulators are challenging to calculate due to their deformable nature and nonlinear dynamics. This article introduces a fast real-time trajectory generation approach for soft robot manipulators, which creates dynamically-feasible motions for arbitrary kinematically-feasible paths of the robot's end effector. Our insight is that piecewise constant curvature (PCC) dynamics models of soft robots can be differentially flat, therefore control inputs can be calculated algebraically rather than through a nonlinear differential equation. We prove this flatness under certain conditions, with the curvatures of the robot as the flat outputs. Our two-step trajectory generation approach uses an inverse kinematics procedure to calculate a motion plan of robot curvatures per end-effector position, then, our flatness diffeomorphism generates corresponding control inputs that respect velocity. We validate our approach through simulations of our representative soft robot manipulator along three different trajectories, demonstrating a margin of 23x faster than real-time at a frequency of 100 Hz. This approach could allow fast verifiable replanning of soft robots' motions in safety-critical physical environments, crucial for deployment in the real world.

A Bi-Level Optimization Approach to Joint Trajectory Optimization for Redundant Manipulators 2024-12-10
Show

In this work, we present an approach to minimizing the time necessary for the end-effector of a redundant robot manipulator to traverse a Cartesian path by optimizing the trajectory of its joints. Each joint has limits in the ranges of position, velocity and acceleration, the latter making jerks in joint space undesirable. The proposed approach takes this nonlinear optimization problem whose variables are path speed and joint trajectory and reformulates it into a bi-level problem. The lower-level formulation is a convex subproblem that considers a fixed joint trajectory and maximizes path speed while considering all joint velocity and acceleration constraints. Under particular conditions, this subproblem has a closed-form solution. Then, we solve a higher-level subproblem by leveraging the directional derivative of the lower-level value with respect to the joint trajectory parameters. In particular, we use this direction to implement a Primal-Dual method that considers the path accuracy and joint position constraints. We show the efficacy of our proposed approach with simulations and experimental results.

16 pa...

16 pages, 14 pictures

3DTrajMaster: Mastering 3D Trajectory for Multi-Entity Motion in Video Generation 2024-12-10
Show

This paper aims to manipulate multi-entity 3D motions in video generation. Previous methods on controllable video generation primarily leverage 2D control signals to manipulate object motions and have achieved remarkable synthesis results. However, 2D control signals are inherently limited in expressing the 3D nature of object motions. To overcome this problem, we introduce 3DTrajMaster, a robust controller that regulates multi-entity dynamics in 3D space, given user-desired 6DoF pose (location and rotation) sequences of entities. At the core of our approach is a plug-and-play 3D-motion grounded object injector that fuses multiple input entities with their respective 3D trajectories through a gated self-attention mechanism. In addition, we exploit an injector architecture to preserve the video diffusion prior, which is crucial for generalization ability. To mitigate video quality degradation, we introduce a domain adaptor during training and employ an annealed sampling strategy during inference. To address the lack of suitable training data, we construct a 360-Motion Dataset, which first correlates collected 3D human and animal assets with GPT-generated trajectory and then captures their motion with 12 evenly-surround cameras on diverse 3D UE platforms. Extensive experiments show that 3DTrajMaster sets a new state-of-the-art in both accuracy and generalization for controlling multi-entity 3D motions. Project page: http://fuxiao0719.github.io/projects/3dtrajmaster

Proje...

Project Page & Code & Data: http://fuxiao0719.github.io/projects/3dtrajmaster

TraSCE: Trajectory Steering for Concept Erasure 2024-12-10
Show

Recent advancements in text-to-image diffusion models have brought them to the public spotlight, becoming widely accessible and embraced by everyday users. However, these models have been shown to generate harmful content such as not-safe-for-work (NSFW) images. While approaches have been proposed to erase such abstract concepts from the models, jail-breaking techniques have succeeded in bypassing such safety measures. In this paper, we propose TraSCE, an approach to guide the diffusion trajectory away from generating harmful content. Our approach is based on negative prompting, but as we show in this paper, conventional negative prompting is not a complete solution and can easily be bypassed in some corner cases. To address this issue, we first propose a modification of conventional negative prompting. Furthermore, we introduce a localized loss-based guidance that enhances the modified negative prompting technique by steering the diffusion trajectory. We demonstrate that our proposed method achieves state-of-the-art results on various benchmarks in removing harmful content including ones proposed by red teams; and erasing artistic styles and objects. Our proposed approach does not require any training, weight modifications, or training data (both image or prompt), making it easier for model owners to erase new concepts.

Multi-finger Manipulation via Trajectory Optimization with Differentiable Rolling and Geometric Constraints 2024-12-10
Show

Parameterizing finger rolling and finger-object contacts in a differentiable manner is important for formulating dexterous manipulation as a trajectory optimization problem. In contrast to previous methods which often assume simplified geometries of the robot and object or do not explicitly model finger rolling, we propose a method to further extend the capabilities of dexterous manipulation by accounting for non-trivial geometries of both the robot and the object. By integrating the object's Signed Distance Field (SDF) with a sampling method, our method estimates contact and rolling-related variables in a differentiable manner and includes those in a trajectory optimization framework. This formulation naturally allows for the emergence of finger-rolling behaviors, enabling the robot to locally adjust the contact points. To evaluate our method, we introduce a benchmark featuring challenging multi-finger dexterous manipulation tasks, such as screwdriver turning and in-hand reorientation. Our method outperforms baselines in terms of achieving desired object configurations and avoiding dropping the object. We also successfully apply our method to a real-world screwdriver turning task and a cuboid alignment task, demonstrating its robustness to the sim2real gap.

POMDP-Based Trajectory Planning for On-Ramp Highway Merging 2024-12-10
Show

This paper addresses the trajectory planning problem for automated vehicle on-ramp highway merging. To tackle this challenge, we extend our previous work on trajectory planning at unsignalized intersections using Partially Observable Markov Decision Processes (POMDPs). The method utilizes the Adaptive Belief Tree (ABT) algorithm, an approximate sampling-based approach to solve POMDPs efficiently. We outline the POMDP formulation process, beginning with discretizing the highway topology to reduce problem complexity. Additionally, we describe the dynamics and measurement models used to predict future states and establish the relationship between available noisy measurements and predictions. Building on our previous work, the dynamics model is expanded to account for lateral movements necessary for lane changes during the merging process. We also define the reward function, which serves as the primary mechanism for specifying the desired behavior of the automated vehicle, combining multiple goals such as avoiding collisions or maintaining appropriate velocity. Our simulation results, conducted on three scenarios based on real-life traffic data from German highways, demonstrate the method's ability to generate safe, collision-free, and efficient merging trajectories. This work shows the versatility of this POMDP-based approach in tackling various automated driving problems.

When UAV Meets Federated Learning: Latency Minimization via Joint Trajectory Design and Resource Allocation 2024-12-10
Show

Federated learning (FL) has emerged as a pivotal solution for training machine learning models over wireless networks, particularly for Internet of Things (IoT) devices with limited computation resources. Despite its benefits, the efficiency of FL is often restricted by the communication quality between IoT devices and the central server. To address this issue, we introduce an innovative approach by deploying an unmanned aerial vehicle (UAV) as a mobile FL server to enhance the training process of FL. By leveraging the UAV's maneuverability, we establish robust line-of-sight connections with IoT devices, significantly improving communication capacity. To improve the overall training efficiency, we formulate a latency minimization problem by jointly optimizing the bandwidth allocation, computing frequencies, transmit power for both the UAV and IoT devices, and the UAV's trajectory. Then, an efficient alternating optimization algorithm is developed to solve it efficiently. Furthermore, we analyze the convergence and computational complexity of the proposed algorithm. Finally, numerical results demonstrate that our proposed scheme not only outperforms existing benchmark schemes in terms of latency but also achieves training efficiency that closely approximate the ideal scenario.

This ...

This manuscript has been submitted to IEEE

Control-Aware Trajectory Predictions for Communication-Efficient Drone Swarm Coordination in Cluttered Environments 2024-12-10
Show

Swarms of Unmanned Aerial Vehicles (UAV) have demonstrated enormous potential in many industrial and commercial applications. However, before deploying UAVs in the real world, it is essential to ensure they can operate safely in complex environments, especially with limited communication capabilities. To address this challenge, we propose a control-aware learning-based trajectory prediction algorithm that can enable communication-efficient UAV swarm control in a cluttered environment. Specifically, our proposed algorithm can enable each UAV to predict the planned trajectories of its neighbors in scenarios with various levels of communication capabilities. The predicted planned trajectories will serve as input to a distributed model predictive control (DMPC) approach. The proposed algorithm combines (1) a trajectory prediction model based on EvolveGCN, a Graph Convolutional Network (GCN) that can handle dynamic graphs, which is further enhanced by compressed messages from adjacent UAVs, and (2) a KKT-informed training approach that applies the Karush-Kuhn-Tucker (KKT) conditions in the training process to encode DMPC information into the trained neural network. We evaluate our proposed algorithm in a funnel-like environment. Results show that the proposed algorithm outperforms state-of-the-art benchmarks, providing close-to-optimal control performance and robustness to limited communication capabilities and measurement noises.

ITPNet: Towards Instantaneous Trajectory Prediction for Autonomous Driving 2024-12-10
Show

Trajectory prediction of agents is crucial for the safety of autonomous vehicles, whereas previous approaches usually rely on sufficiently long-observed trajectory to predict the future trajectory of the agents. However, in real-world scenarios, it is not realistic to collect adequate observed locations for moving agents, leading to the collapse of most prediction models. For instance, when a moving car suddenly appears and is very close to an autonomous vehicle because of the obstruction, it is quite necessary for the autonomous vehicle to quickly and accurately predict the future trajectories of the car with limited observed trajectory locations. In light of this, we focus on investigating the task of instantaneous trajectory prediction, i.e., two observed locations are available during inference. To this end, we propose a general and plug-and-play instantaneous trajectory prediction approach, called ITPNet. Specifically, we propose a backward forecasting mechanism to reversely predict the latent feature representations of unobserved historical trajectories of the agent based on its two observed locations and then leverage them as complementary information for future trajectory prediction. Meanwhile, due to the inevitable existence of noise and redundancy in the predicted latent feature representations, we further devise a Noise Redundancy Reduction Former, aiming at to filter out noise and redundancy from unobserved trajectories and integrate the filtered features and observed features into a compact query for future trajectory predictions. In essence, ITPNet can be naturally compatible with existing trajectory prediction models, enabling them to gracefully handle the case of instantaneous trajectory prediction. Extensive experiments on the Argoverse and nuScenes datasets demonstrate ITPNet outperforms the baselines, and its efficacy with different trajectory prediction models.

Model predictive control-based trajectory generation for agile landing of unmanned aerial vehicle on a moving boat 2024-12-10
Show

This paper proposes a novel trajectory generation method based on Model Predictive Control (MPC) for agile landing of an Unmanned Aerial Vehicle (UAV) onto an Unmanned Surface Vehicle (USV)'s deck in harsh conditions. The trajectory generation exploits the state predictions of the USV to create periodically updated trajectories for a multirotor UAV to precisely land on the deck of a moving USV even in cases where the deck's inclination is continuously changing. We use an MPC-based scheme to create trajectories that consider both the UAV dynamics and the predicted states of the USV up to the first derivative of position and orientation. Compared to existing approaches, our method dynamically modifies the penalization matrices to precisely follow the corresponding states with respect to the flight phase. Especially during the landing maneuver, the UAV synchronizes attitude with the USV's, allowing for fast landing on a tilted deck. Simulations show the method's reliability in various sea conditions up to Rough sea (wave height 4 m), outperforming state-of-the-art methods in landing speed and accuracy, with twice the precision on average. Finally, real-world experiments validate the simulation results, demonstrating robust landings on a moving USV, while all computations are performed in real-time onboard the UAV.

18 pa...

18 pages, 17 figures, Ocean Engineering

PPT: Pre-Training with Pseudo-Labeled Trajectories for Motion Forecasting 2024-12-09
Show

Motion forecasting (MF) for autonomous driving aims at anticipating trajectories of surrounding agents in complex urban scenarios. In this work, we investigate a mixed strategy in MF training that first pre-train motion forecasters on pseudo-labeled data, then fine-tune them on annotated data. To obtain pseudo-labeled trajectories, we propose a simple pipeline that leverages off-the-shelf single-frame 3D object detectors and non-learning trackers. The whole pre-training strategy including pseudo-labeling is coined as PPT. Our extensive experiments demonstrate that: (1) combining PPT with supervised fine-tuning on annotated data achieves superior performance on diverse testbeds, especially under annotation-efficient regimes, (2) scaling up to multiple datasets improves the previous state-of-the-art and (3) PPT helps enhance cross-dataset generalization. Our findings showcase PPT as a promising pre-training solution for robust motion forecasting in diverse autonomous driving contexts.

Parameter Adjustments in POMDP-Based Trajectory Planning for Unsignalized Intersections 2024-12-09
Show

This paper investigates the problem of trajectory planning for autonomous vehicles at unsignalized intersections, specifically focusing on scenarios where the vehicle lacks the right of way and yet must cross safely. To address this issue, we have employed a method based on the Partially Observable Markov Decision Processes (POMDPs) framework designed for planning under uncertainty. The method utilizes the Adaptive Belief Tree (ABT) algorithm as an approximate solver for the POMDPs. We outline the POMDP formulation, beginning with discretizing the intersection's topology. Additionally, we present a dynamics model for the prediction of the evolving states of vehicles, such as their position and velocity. Using an observation model, we also describe the connection of those states with the imperfect (noisy) available measurements. Our results confirmed that the method is able to plan collision-free trajectories in a series of simulations utilizing real-world traffic data from aerial footage of two distinct intersections. Furthermore, we studied the impact of parameter adjustments of the ABT algorithm on the method's performance. This provides guidance in determining reasonable parameter settings, which is valuable for future method applications.

Deterministic Trajectory Optimization through Probabilistic Optimal Control 2024-12-09
Show

In this article, we discuss two algorithms tailored to discrete-time deterministic finite-horizon nonlinear optimal control problems or so-called deterministic trajectory optimization problems. Both algorithms can be derived from an emerging theoretical paradigm that we refer to as probabilistic optimal control. The paradigm reformulates stochastic optimal control as an equivalent probabilistic inference problem and can be viewed as a generalisation of the former. The merit of this perspective is that it allows to address the problem using the Expectation-Maximization algorithm. It is shown that the application of this algorithm results in a fixed point iteration of probabilistic policies that converge to the deterministic optimal policy. Two strategies for policy evaluation are discussed, using state-of-the-art uncertainty quantification methods resulting into two distinct algorithms. The algorithms are structurally closest related to the differential dynamic programming algorithm and related methods that use sigma-point methods to avoid direct gradient evaluations. The main advantage of the algorithms is an improved balance between exploration and exploitation over the iterations, leading to improved numerical stability and accelerated convergence. These properties are demonstrated on different nonlinear systems.

Efficient Data Representation for Motion Forecasting: A Scene-Specific Trajectory Set Approach 2024-12-09
Show

Representing diverse and plausible future trajectories is critical for motion forecasting in autonomous driving. However, efficiently capturing these trajectories in a compact set remains challenging. This study introduces a novel approach for generating scene-specific trajectory sets tailored to different contexts, such as intersections and straight roads, by leveraging map information and actor dynamics. A deterministic goal sampling algorithm identifies relevant map regions, while our Recursive In-Distribution Subsampling (RIDS) method enhances trajectory plausibility by condensing redundant representations. Experiments on the Argoverse 2 dataset demonstrate that our method achieves up to a 10% improvement in Driving Area Compliance (DAC) compared to baseline methods while maintaining competitive displacement errors. Our work highlights the benefits of mining such scene-aware trajectory sets and how they could capture the complex and heterogeneous nature of actor behavior in real-world driving scenarios.

Graph Neural Networks

Title Date Abstract Comment
HetGCoT-Rec: Heterogeneous Graph-Enhanced Chain-of-Thought LLM Reasoning for Journal Recommendation 2025-01-02
Show

Academic journal recommendation requires effectively combining structural understanding of scholarly networks with interpretable recommendations. While graph neural networks (GNNs) and large language models (LLMs) excel in their respective domains, current approaches often fail to achieve true integration at the reasoning level. We propose HetGCoT-Rec, a framework that deeply integrates heterogeneous graph transformer with LLMs through chain-of-thought reasoning. Our framework features two key technical innovations: (1) a structure-aware mechanism that transforms heterogeneous graph neural network learned subgraph information into natural language contexts, utilizing predefined metapaths to capture academic relationships, and (2) a multi-step reasoning strategy that systematically embeds graph-derived contexts into the LLM's stage-wise reasoning process. Experiments on a dataset collected from OpenAlex demonstrate that our approach significantly outperforms baseline methods, achieving 96.48% Hit rate and 92.21% H@1 accuracy. Furthermore, we validate the framework's adaptability across different LLM architectures, showing consistent improvements in both recommendation accuracy and explanation quality. Our work demonstrates an effective approach for combining graph-structured reasoning with language models for interpretable academic venue recommendations.

Improving Graph Neural Network Training Efficiency By Using Top Non-Robust Samples In The Training Set 2025-01-02
Show

Graph Neural Networks (GNNs) are a highly effective neural network architecture for processing graph-structured data. Unlike traditional neural networks that rely solely on the features of the data as input, GNNs leverage both the graph structure, which represents the relationships between data points, and the feature matrix of the data to optimize their feature representation. This unique capability enables GNNs to achieve superior performance across various tasks. However, it also makes GNNs more susceptible to noise from both the graph structure and the data features, which can significantly degrade their performance in common tasks such as classification and prediction. To address this issue, this paper proposes a novel method for constructing training sets by identifying training samples that are particularly sensitive to noise for a given model. These samples are then used to enhance the model's ability to handle noise-prone instances effectively. Experimental results demonstrate that this approach can significantly improve training efficiency.

Non-Homophilic Graph Pre-Training and Prompt Learning 2025-01-02
Show

Graphs are ubiquitous for modeling complex relationships between objects across various fields. Graph neural networks (GNNs) have become a mainstream technique for graph-based applications, but their performance heavily relies on abundant labeled data. To reduce labeling requirement, pre-training and prompt learning has become a popular alternative. However, most existing prompt methods do not differentiate homophilic and heterophilic characteristics of real-world graphs. In particular, many real-world graphs are non-homophilic, not strictly or uniformly homophilic with mixing homophilic and heterophilic patterns, exhibiting varying non-homophilic characteristics across graphs and nodes. In this paper, we propose ProNoG, a novel pre-training and prompt learning framework for such non-homophilic graphs. First, we analyze existing graph pre-training methods, providing theoretical insights into the choice of pre-training tasks. Second, recognizing that each node exhibits unique non-homophilic characteristics, we propose a conditional network to characterize the node-specific patterns in downstream tasks. Finally, we thoroughly evaluate and analyze ProNoG through extensive experiments on ten public datasets.

Accepted by KDD 2025
RecLM: Recommendation Instruction Tuning 2025-01-01
Show

Modern recommender systems aim to deeply understand users' complex preferences through their past interactions. While deep collaborative filtering approaches using Graph Neural Networks (GNNs) excel at capturing user-item relationships, their effectiveness is limited when handling sparse data or zero-shot scenarios, primarily due to constraints in ID-based embedding functions. To address these challenges, we propose a model-agnostic recommendation instruction-tuning paradigm that seamlessly integrates large language models with collaborative filtering. Our proposed $\underline{Rec}$ommendation $\underline{L}$anguage $\underline{M}$odel (RecLM) enhances the capture of user preference diversity through a carefully designed reinforcement learning reward function that facilitates self-augmentation of language models. Comprehensive evaluations demonstrate significant advantages of our approach across various settings, and its plug-and-play compatibility with state-of-the-art recommender systems results in notable performance enhancements. The implementation of our RecLM framework is publicly available at: https://github.com/HKUDS/RecLM.

Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements 2025-01-01
Show

Graphs are essential data structures for modeling complex interactions in domains such as social networks, molecular structures, and biological systems. Graph-level tasks, which predict properties or classes for the entire graph, are critical for applications, such as molecular property prediction and subgraph counting. Graph Neural Networks (GNNs) have shown promise in these tasks, but their evaluations are often limited to narrow datasets, tasks, and inconsistent experimental setups, restricting their generalizability. To address these limitations, we propose a unified evaluation framework for graph-level GNNs. This framework provides a standardized setting to evaluate GNNs across diverse datasets, various graph tasks (e.g., graph classification and regression), and challenging scenarios, including noisy, imbalanced, and few-shot graphs. Additionally, we propose a novel GNN model with enhanced expressivity and generalization capabilities. Specifically, we enhance the expressivity of GNNs through a $k$-path rooted subgraph approach, enabling the model to effectively count subgraphs (e.g., paths and cycles). Moreover, we introduce a unified graph contrastive learning algorithm for graphs across diverse domains, which adaptively removes unimportant edges to augment graphs, thereby significantly improving generalization performance. Extensive experiments demonstrate that our model achieves superior performance against fourteen effective baselines across twenty-seven graph datasets, establishing it as a robust and generalizable model for graph-level tasks.

Avoiding Oversmoothing in Deep Graph Neural Networks: A Multiplicative Ergodic Analysis 2025-01-01
Show

Graph neural networks (GNNs) have achieved remarkable empirical success in processing and representing graph-structured data across various domains. However, a significant challenge known as "oversmoothing" persists, where vertex features become nearly indistinguishable in deep GNNs, severely restricting their expressive power and practical utility. In this work, we analyze the asymptotic oversmoothing rates of deep GNNs with and without residual connections by deriving explicit convergence rates for a normalized vertex similarity measure. Our analytical framework is grounded in the multiplicative ergodic theorem. Furthermore, we demonstrate that adding residual connections effectively mitigates or prevents oversmoothing across several broad families of parameter distributions. The theoretical findings are strongly supported by numerical experiments.

AttriReBoost: A Gradient-Free Propagation Optimization Method for Cold Start Mitigation in Attribute Missing Graphs 2025-01-01
Show

Missing attribute issues are prevalent in the graph learning, leading to biased outcomes in Graph Neural Networks (GNNs). Existing methods that rely on feature propagation are prone to cold start problem, particularly when dealing with attribute resetting and low-degree nodes, which hinder effective propagation and convergence. To address these challenges, we propose AttriReBoost (ARB), a novel method that incorporates propagation-based method to mitigate cold start problems in attribute-missing graphs. ARB enhances global feature propagation by redefining initial boundary conditions and strategically integrating virtual edges, thereby improving node connectivity and ensuring more stable and efficient convergence. This method facilitates gradient-free attribute reconstruction with lower computational overhead. The proposed method is theoretically grounded, with its convergence rigorously established. Extensive experiments on several real-world benchmark datasets demonstrate the effectiveness of ARB, achieving an average accuracy improvement of 5.11% over state-of-the-art methods. Additionally, ARB exhibits remarkable computational efficiency, processing a large-scale graph with 2.49 million nodes in just 16 seconds on a single GPU. Our code is available at https://github.com/limengran98/ARB.

KAN KAN Buff Signed Graph Neural Networks? 2025-01-01
Show

Graph Representation Learning aims to create embeddings for nodes and edges, capturing their features and interconnections. Graph Neural Networks (GNNs) have excelled in this task, leveraging neural networks to model complex graph relationships. Recently, the Kolmogorov-Arnold Neural Network (KAN) emerged as an alternative to Multi-Layer Perceptron (MLP), showing improved accuracy and interpretability with fewer parameters. While KANs have been integrated into unsigned GNNs, their application in signed GNNs remains unexplored. This paper integrates KAN into Signed Graph Convolutional Networks (SGCNs) to evaluate its performance on signed graphs where edges have positive or negative signs. We empirically assess KAN-enhanced SGCNs (KASGCN) on downstream tasks such as signed community detection and link sign prediction to enhance the embedding quality in signed networks. Considering the variability in the results indicated by the relatively large standard deviation, KASGCN demonstrates competitive performance with, or similar to, the vanilla SGCN in the evaluated downstream tasks, and its effectiveness is context-dependent (signed graph and parameters...etc.).

Mixture of Link Predictors on Graphs 2024-12-31
Show

Link prediction, which aims to forecast unseen connections in graphs, is a fundamental task in graph machine learning. Heuristic methods, leveraging a range of different pairwise measures such as common neighbors and shortest paths, often rival the performance of vanilla Graph Neural Networks (GNNs). Therefore, recent advancements in GNNs for link prediction (GNN4LP) have primarily focused on integrating one or a few types of pairwise information. In this work, we reveal that different node pairs within the same dataset necessitate varied pairwise information for accurate prediction and models that only apply the same pairwise information uniformly could achieve suboptimal performance. As a result, we propose a simple mixture of experts model Link-MoE for link prediction. Link-MoE utilizes various GNNs as experts and strategically selects the appropriate expert for each node pair based on various types of pairwise information. Experimental results across diverse real-world datasets demonstrate substantial performance improvement from Link-MoE. Notably, Link-MoE achieves a relative improvement of 18.71% on the MRR metric for the Pubmed dataset and 9.59% on the Hits@100 metric for the ogbl-ppa dataset, compared to the best baselines.

Unbiased GNN Learning via Fairness-Aware Subgraph Diffusion 2024-12-31
Show

Graph Neural Networks (GNNs) have demonstrated remarkable efficacy in tackling a wide array of graph-related tasks across diverse domains. However, a significant challenge lies in their propensity to generate biased predictions, particularly with respect to sensitive node attributes such as age and gender. These biases, inherent in many machine learning models, are amplified in GNNs due to the message-passing mechanism, which allows nodes to influence each other, rendering the task of making fair predictions notably challenging. This issue is particularly pertinent in critical domains where model fairness holds paramount importance. In this paper, we propose a novel generative Fairness-Aware Subgraph Diffusion (FASD) method for unbiased GNN learning. The method initiates by strategically sampling small subgraphs from the original large input graph, and then proceeds to conduct subgraph debiasing via generative fairness-aware graph diffusion processes based on stochastic differential equations (SDEs). To effectively diffuse unfairness in the input data, we introduce additional adversary bias perturbations to the subgraphs during the forward diffusion process, and train score-based models to predict these applied perturbations, enabling them to learn the underlying dynamics of the biases present in the data. Subsequently, the trained score-based models are utilized to further debias the original subgraph samples through the reverse diffusion process. Finally, FASD induces fair node predictions on the input graph by performing standard GNN learning on the debiased subgraphs. Experimental results demonstrate the superior performance of the proposed method over state-of-the-art Fair GNN baselines across multiple benchmark datasets.

Node classification in networks via simplicial interactions 2024-12-31
Show

In the node classification task, it is natural to presume that densely connected nodes tend to exhibit similar attributes. Given this, it is crucial to first define what constitutes a dense connection and to develop a reliable mathematical tool for assessing node cohesiveness. In this paper, we propose a probability-based objective function for semi-supervised node classification that takes advantage of higher-order networks' capabilities. The proposed function reflects the philosophy aligned with the intuition behind classifying within higher order networks, as it is designed to reduce the likelihood of nodes interconnected through higher-order networks bearing different labels. Additionally, we propose the Stochastic Block Tensor Model (SBTM) as a graph generation model designed specifically to address a significant limitation of the traditional stochastic block model, which does not adequately represent the distribution of higher-order structures in real networks. We evaluate the objective function using networks generated by the SBTM, which include both balanced and imbalanced scenarios. Furthermore, we present an approach that integrates the objective function with graph neural network (GNN)-based semi-supervised node classification methodologies, aiming for additional performance gains. Our results demonstrate that in challenging classification scenarios--characterized by a low probability of homo-connections, a high probability of hetero-connections, and limited prior node information--models based on the higher-order network outperform pairwise interaction-based models. Furthermore, experimental results suggest that integrating our proposed objective function with existing GNN-based node classification approaches enhances classification performance by efficiently learning higher-order structures distributed in the network.

v3 wi...

v3 will be published in the IEEE Transactions on Neural Networks and Learning Systems

CPT: Competence-progressive Training Strategy for Few-shot Node Classification 2024-12-31
Show

Graph Neural Networks (GNNs) have made significant advancements in node classification, but their success relies on sufficient labeled nodes per class in the training data. Real-world graph data often exhibits a long-tail distribution with sparse labels, emphasizing the importance of GNNs' ability in few-shot node classification, which entails categorizing nodes with limited data. Traditional episodic meta-learning approaches have shown promise in this domain, but they face an inherent limitation: it might lead the model to converge to suboptimal solutions because of random and uniform task assignment, ignoring task difficulty levels. This could lead the meta-learner to face complex tasks too soon, hindering proper learning. Ideally, the meta-learner should start with simple concepts and advance to more complex ones, like human learning. So, we introduce CPT, a novel two-stage curriculum learning method that aligns task difficulty with the meta-learner's progressive competence, enhancing overall performance. Specifically, in CPT's initial stage, the focus is on simpler tasks, fostering foundational skills for engaging with complex tasks later. Importantly, the second stage dynamically adjusts task difficulty based on the meta-learner's growing competence, aiming for optimal knowledge acquisition. Extensive experiments on popular node classification datasets demonstrate significant improvements of our strategy over existing methods.

v2. a...

v2. arXiv admin note: text overlap with arXiv:2206.11972 by other authors

Efficient Large-Scale Traffic Forecasting with Transformers: A Spatial Data Management Perspective 2024-12-31
Show

Road traffic forecasting is crucial in real-world intelligent transportation scenarios like traffic dispatching and path planning in city management and personal traveling. Spatio-temporal graph neural networks (STGNNs) stand out as the mainstream solution in this task. Nevertheless, the quadratic complexity of remarkable dynamic spatial modeling-based STGNNs has become the bottleneck over large-scale traffic data. From the spatial data management perspective, we present a novel Transformer framework called PatchSTG to efficiently and dynamically model spatial dependencies for large-scale traffic forecasting with interpretability and fidelity. Specifically, we design a novel irregular spatial patching to reduce the number of points involved in the dynamic calculation of Transformer. The irregular spatial patching first utilizes the leaf K-dimensional tree (KDTree) to recursively partition irregularly distributed traffic points into leaf nodes with a small capacity, and then merges leaf nodes belonging to the same subtree into occupancy-equaled and non-overlapped patches through padding and backtracking. Based on the patched data, depth and breadth attention are used interchangeably in the encoder to dynamically learn local and global spatial knowledge from points in a patch and points with the same index of patches. Experimental results on four real world large-scale traffic datasets show that our PatchSTG achieves train speed and memory utilization improvements up to $10\times$ and $4\times$ with the state-of-the-art performance.

Accep...

Accepted by SIGKDD 2025

Using pretrained graph neural networks with token mixers as geometric featurizers for conformational dynamics 2024-12-31
Show

Identifying informative low-dimensional features that characterize dynamics in molecular simulations remains a challenge, often requiring extensive manual tuning and system-specific knowledge. Here, we introduce geom2vec, in which pretrained graph neural networks (GNNs) are used as universal geometric featurizers. By pretraining equivariant GNNs on a large dataset of molecular conformations with a self-supervised denoising objective, we obtain transferable structural representations that are useful for learning conformational dynamics without further fine-tuning. We show how the learned GNN representations can capture interpretable relationships between structural units (tokens) by combining them with expressive token mixers. Importantly, decoupling training the GNNs from training for downstream tasks enables analysis of larger molecular graphs (such as small proteins at all-atom resolution) with limited computational resources. In these ways, geom2vec eliminates the need for manual feature selection and increases the robustness of simulation analyses.

13 pa...

13 pages, 8 figures, supporting information appended

MADE: Graph Backdoor Defense with Masked Unlearning 2024-12-31
Show

Graph Neural Networks (GNNs) have garnered significant attention from researchers due to their outstanding performance in handling graph-related tasks, such as social network analysis, protein design, and so on. Despite their widespread application, recent research has demonstrated that GNNs are vulnerable to backdoor attacks, implemented by injecting triggers into the training datasets. Trained on the poisoned data, GNNs will predict target labels when attaching trigger patterns to inputs. This vulnerability poses significant security risks for applications of GNNs in sensitive domains, such as drug discovery. While there has been extensive research into backdoor defenses for images, strategies to safeguard GNNs against such attacks remain underdeveloped. Furthermore, we point out that conventional backdoor defense methods designed for images cannot work well when directly implemented on graph data. In this paper, we first analyze the key difference between image backdoor and graph backdoor attacks. Then we tackle the graph defense problem by presenting a novel approach called MADE, which devises an adversarial mask generation mechanism that selectively preserves clean sub-graphs and further leverages masks on edge weights to eliminate the influence of triggers effectively. Extensive experiments across various graph classification tasks demonstrate the effectiveness of MADE in significantly reducing the attack success rate (ASR) while maintaining a high classification accuracy.

15 pages, 10 figures
High-Rank Irreducible Cartesian Tensor Decomposition and Bases of Equivariant Spaces 2024-12-30
Show

Irreducible Cartesian tensors (ICTs) play a crucial role in the design of equivariant graph neural networks, as well as in theoretical chemistry and chemical physics. Meanwhile, the design space of available linear operations on tensors that preserve symmetry presents a significant challenge. The ICT decomposition and a basis of this equivariant space are difficult to obtain for high-order tensors. After decades of research, we recently achieve an explicit ICT decomposition for $n=5$ \citep{bonvicini2024irreducible} with factorial time/space complexity. This work, for the first time, obtains decomposition matrices for ICTs up to rank $n=9$ with reduced and affordable complexity, by constructing what we call path matrices. The path matrices are obtained via performing chain-like contraction with Clebsch-Gordan matrices following the parentage scheme. We prove and leverage that the concatenation of path matrices is an orthonormal change-of-basis matrix between the Cartesian tensor product space and the spherical direct sum spaces. Furthermore, we identify a complete orthogonal basis for the equivariant space, rather than a spanning set \citep{pearce2023brauer}, through this path matrices technique. We further extend our result to the arbitrary tensor product and direct sum spaces, enabling free design between different spaces while keeping symmetry. The Python code is available in https://github.com/ShihaoShao-GH/ICT-decomposition-and-equivariant-bases where the $n=6,\dots,9$ ICT decomposition matrices are obtained in 1s, 3s, 11s, and 4m32s, respectively.

43 pages
A Graph Neural Network deep-dive into successful counterattacks 2024-12-30
Show

A counterattack in soccer is a high speed, high intensity direct attack that can occur when a team transitions from a defensive state to an attacking state after regaining possession of the ball. The aim is to create a goal-scoring opportunity by convering a lot of ground with minimal passes before the opposing team can recover their defensive shape. The purpose of this research is to build gender-specific Graph Neural Networks to model the likelihood of a counterattack being successful and uncover what factors make them successful in professional soccer. These models are trained on a total of 20863 frames of synchronized on-ball event and spatiotemporal (broadcast) tracking data. This dataset is derived from 632 games of MLS (2022), NWSL (2022) and international soccer (2020-2022). With this data we demonstrate that gender-specific Graph Neural Networks outperform architecturally identical gender-ambiguous models in predicting the successful outcome of counterattacks. We show, using Permutation Feature Importance, that byline to byline speed, angle to the goal, angle to the ball and sideline to sideline speed are the node features with the highest impact on model performance. Additionally, we offer some illustrative examples on how to navigate the infinite solution search space to aid in identifying improvements for player decision making. This research is accompanied by an open-source repository containing all data and code, and it is also accompanied by an open-source Python package which simplifies converting spatiotemporal data into graphs. This package also facilitates testing, validation, training and prediction with this data. This should allow the reader to replicate and improve upon our research more easily.

11 pa...

11 pages, 11 figures, first submitted (and accepted) at MIT Sloan Sports Analytics Conference 2023

Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction 2024-12-30
Show

Data-centric methods have shown great potential in understanding and predicting spatiotemporal dynamics, enabling better design and control of the object system. However, pure deep learning models often lack interpretability, fail to obey intrinsic physics, and struggle to cope with the various domains. While geometry-based methods, e.g., graph neural networks (GNNs), have been proposed to further tackle these challenges, they still need to find the implicit physical laws from large datasets and rely excessively on rich labeled data. In this paper, we herein introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework, to learn spatiotemporal dynamics based on limited training data. The network is designed to conform to the general conservation law via symmetry, where conservative and non-conservative information passes over a multiscale space enhanced by a latent temporal marching strategy. The efficacy of our model has been verified in various spatiotemporal systems based on synthetic and real-world datasets, showing superiority over baseline models. Results demonstrate that CiGNN exhibits remarkable accuracy and generalization ability, and is readily applicable to learning for prediction of various spatiotemporal dynamics in a spatial domain with complex geometry.

Efficient Link Prediction via GNN Layers Induced by Negative Sampling 2024-12-30
Show

Graph neural networks (GNNs) for link prediction can loosely be divided into two broad categories. First, \emph{node-wise} architectures pre-compute individual embeddings for each node that are later combined by a simple decoder to make predictions. While extremely efficient at inference time, model expressiveness is limited such that isomorphic nodes contributing to candidate edges may not be distinguishable, compromising accuracy. In contrast, \emph{edge-wise} methods rely on the formation of edge-specific subgraph embeddings to enrich the representation of pair-wise relationships, disambiguating isomorphic nodes to improve accuracy, but with increased model complexity. To better navigate this trade-off, we propose a novel GNN architecture whereby the \emph{forward pass} explicitly depends on \emph{both} positive (as is typical) and negative (unique to our approach) edges to inform more flexible, yet still cheap node-wise embeddings. This is achieved by recasting the embeddings themselves as minimizers of a forward-pass-specific energy function that favors separation of positive and negative samples. Notably, this energy is distinct from the actual training loss shared by most existing link prediction models, where contrastive pairs only influence the \textit{backward pass}. As demonstrated by extensive empirical evaluations, the resulting architecture retains the inference speed of node-wise models, while producing competitive accuracy with edge-wise alternatives. We released our code at https://github.com/yxzwang/SubmissionverOfYinYanGNN.

Accep...

Accepted to TKDE. Citation information: DOI 10.1109/TKDE.2024.3481015

GISExplainer: On Explainability of Graph Neural Networks via Game-theoretic Interaction Subgraphs 2024-12-30
Show

Explainability is crucial for the application of black-box Graph Neural Networks (GNNs) in critical fields such as healthcare, finance, cybersecurity, and more. Various feature attribution methods, especially the perturbation-based methods, have been proposed to indicate how much each node/edge contributes to the model predictions. However, these methods fail to generate connected explanatory subgraphs that consider the causal interaction between edges within different coalition scales, which will result in unfaithful explanations. In our study, we propose GISExplainer, a novel game-theoretic interaction based explanation method that uncovers what the underlying GNNs have learned for node classification by discovering human-interpretable causal explanatory subgraphs. First, GISExplainer defines a causal attribution mechanism that considers the game-theoretic interaction of multi-granularity coalitions in candidate explanatory subgraph to quantify the causal effect of an edge on the prediction. Second, GISExplainer assumes that the coalitions with negative effects on the predictions are also significant for model interpretation, and the contribution of the computation graph stems from the combined influence of both positive and negative interactions within the coalitions. Then, GISExplainer regards the explanation task as a sequential decision process, in which a salient edges is successively selected and connected to the previously selected subgraph based on its causal effect to form an explanatory subgraph, ultimately striving for better explanations. Additionally, an efficiency optimization scheme is proposed for the causal attribution mechanism through coalition sampling. Extensive experiments demonstrate that GISExplainer achieves better performance than state-of-the-art approaches w.r.t. two quantitative metrics: Fidelity and Sparsity.

13 pages, 7 figures
Gaussian Mixture Models Based Augmentation Enhances GNN Generalization 2024-12-30
Show

Graph Neural Networks (GNNs) have shown great promise in tasks like node and graph classification, but they often struggle to generalize, particularly to unseen or out-of-distribution (OOD) data. These challenges are exacerbated when training data is limited in size or diversity. To address these issues, we introduce a theoretical framework using Rademacher complexity to compute a regret bound on the generalization error and then characterize the effect of data augmentation. This framework informs the design of GMM-GDA, an efficient graph data augmentation (GDA) algorithm leveraging the capability of Gaussian Mixture Models (GMMs) to approximate any distribution. Our approach not only outperforms existing augmentation techniques in terms of generalization but also offers improved time complexity, making it highly suitable for real-world applications.

FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs 2024-12-30
Show

Graph neural network universal interatomic potentials (GNN-UIPs) have demonstrated remarkable generalization and transfer capabilities in material discovery and property prediction. These models can accelerate molecular dynamics (MD) simulation by several orders of magnitude while maintaining \textit{ab initio} accuracy, making them a promising new paradigm in material simulations. One notable example is Crystal Hamiltonian Graph Neural Network (CHGNet), pretrained on the energies, forces, stresses, and magnetic moments from the MPtrj dataset, representing a state-of-the-art GNN-UIP model for charge-informed MD simulations. However, training the CHGNet model is time-consuming(8.3 days on one A100 GPU) for three reasons: (i) requiring multi-layer propagation to reach more distant atom information, (ii) requiring second-order derivatives calculation to finish weights updating and (iii) the implementation of reference CHGNet does not fully leverage the computational capabilities. This paper introduces FastCHGNet, an optimized CHGNet, with three contributions: Firstly, we design innovative Force/Stress Readout modules to decompose Force/Stress prediction. Secondly, we adopt massive optimizations such as kernel fusion, redundancy bypass, etc, to exploit GPU computation power sufficiently. Finally, we extend CHGNet to support multiple GPUs and propose a load-balancing technique to enhance GPU utilization. Numerical results show that FastCHGNet reduces memory footprint by a factor of 3.59. The final training time of FastCHGNet can be decreased to \textbf{1.53 hours} on 32 GPUs without sacrificing model accuracy.

Cluster-guided Contrastive Class-imbalanced Graph Classification 2024-12-30
Show

This paper studies the problem of class-imbalanced graph classification, which aims at effectively classifying the graph categories in scenarios with imbalanced class distributions. While graph neural networks (GNNs) have achieved remarkable success, their modeling ability on imbalanced graph-structured data remains suboptimal, which typically leads to predictions biased towards the majority classes. On the other hand, existing class-imbalanced learning methods in vision may overlook the rich graph semantic substructures of the majority classes and excessively emphasize learning from the minority classes. To address these challenges, we propose a simple yet powerful approach called C$^3$GNN that integrates the idea of clustering into contrastive learning to enhance class-imbalanced graph classification. Technically, C$^3$GNN clusters graphs from each majority class into multiple subclasses, with sizes comparable to the minority class, mitigating class imbalance. It also employs the Mixup technique to generate synthetic samples, enriching the semantic diversity of each subclass. Furthermore, supervised contrastive learning is used to hierarchically learn effective graph representations, enabling the model to thoroughly explore semantic substructures in majority classes while avoiding excessive focus on minority classes. Extensive experiments on real-world graph benchmark datasets verify the superior performance of our proposed method against competitive baselines.

Accep...

Accepted by Proceedings of the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)

Graph Structure Refinement with Energy-based Contrastive Learning 2024-12-30
Show

Graph Neural Networks (GNNs) have recently gained widespread attention as a successful tool for analyzing graph-structured data. However, imperfect graph structure with noisy links lacks enough robustness and may damage graph representations, therefore limiting the GNNs' performance in practical tasks. Moreover, existing generative architectures fail to fit discriminative graph-related tasks. To tackle these issues, we introduce an unsupervised method based on a joint of generative training and discriminative training to learn graph structure and representation, aiming to improve the discriminative performance of generative models. We propose an Energy-based Contrastive Learning (ECL) guided Graph Structure Refinement (GSR) framework, denoted as ECL-GSR. To our knowledge, this is the first work to combine energy-based models with contrastive learning for GSR. Specifically, we leverage ECL to approximate the joint distribution of sample pairs, which increases the similarity between representations of positive pairs while reducing the similarity between negative ones. Refined structure is produced by augmenting and removing edges according to the similarity metrics among node representations. Extensive experiments demonstrate that ECL-GSR outperforms the state-of-the-art on eight benchmark datasets in node classification. ECL-GSR achieves faster training with fewer samples and memories against the leading baseline, highlighting its simplicity and efficiency in downstream tasks.

Accep...

Accepted to AAAI 2025

Overcoming Class Imbalance: Unified GNN Learning with Structural and Semantic Connectivity Representations 2024-12-30
Show

Class imbalance is pervasive in real-world graph datasets, where the majority of annotated nodes belong to a small set of classes (majority classes), leaving many other classes (minority classes) with only a handful of labeled nodes. Graph Neural Networks (GNNs) suffer from significant performance degradation in the presence of class imbalance, exhibiting bias towards majority classes and struggling to generalize effectively on minority classes. This limitation stems, in part, from the message passing process, leading GNNs to overfit to the limited neighborhood of annotated nodes from minority classes and impeding the propagation of discriminative information throughout the entire graph. In this paper, we introduce a novel Unified Graph Neural Network Learning (Uni-GNN) framework to tackle class-imbalanced node classification. The proposed framework seamlessly integrates both structural and semantic connectivity representations through semantic and structural node encoders. By combining these connectivity types, Uni-GNN extends the propagation of node embeddings beyond immediate neighbors, encompassing non-adjacent structural nodes and semantically similar nodes, enabling efficient diffusion of discriminative information throughout the graph. Moreover, to harness the potential of unlabeled nodes within the graph, we employ a balanced pseudo-label generation mechanism that augments the pool of available labeled nodes from minority classes in the training set. Experimental results underscore the superior performance of our proposed Uni-GNN framework compared to state-of-the-art class-imbalanced graph learning baselines across multiple benchmark datasets.

Graph Neural Networks for Next-Generation-IoT: Recent Advances and Open Challenges 2024-12-30
Show

Graph Neural Networks (GNNs) have emerged as a critical tool for optimizing and managing the complexities of the Internet of Things (IoT) in next-generation networks. This survey presents a comprehensive exploration of how GNNs may be harnessed in 6G IoT environments, focusing on key challenges and opportunities through a series of open questions. We commence with an exploration of GNN paradigms and the roles of node, edge, and graph-level tasks in solving wireless networking problems and highlight GNNs' ability to overcome the limitations of traditional optimization methods. This guidance enhances problem-solving efficiency across various next-generation (NG) IoT scenarios. Next, we provide a detailed discussion of the application of GNN in advanced NG enabling technologies, including massive MIMO, reconfigurable intelligent surfaces, satellites, THz, mobile edge computing (MEC), and ultra-reliable low latency communication (URLLC). We then delve into the challenges posed by adversarial attacks, offering insights into defense mechanisms to secure GNN-based NG-IoT networks. Next, we examine how GNNs can be integrated with future technologies like integrated sensing and communication (ISAC), satellite-air-ground-sea integrated networks (SAGSIN), and quantum computing. Our findings highlight the transformative potential of GNNs in improving efficiency, scalability, and security within NG-IoT systems, paving the way for future advances. Finally, we propose a set of design guidelines to facilitate the development of efficient, scalable, and secure GNN models tailored for NG IoT applications.

28 pa...

28 pages, 15 figures, and 6 tables. Submitted for publication

Boosting Column Generation with Graph Neural Networks for Joint Rider Trip Planning and Crew Shift Scheduling 2024-12-29
Show

Optimizing service schedules is pivotal to the reliable, efficient, and inclusive on-demand mobility. This pressing challenge is further exacerbated by the increasing needs of an aging population, the oversubscription of existing services, and the lack of effective solution methods. This study addresses the intricacies of service scheduling, by jointly optimizing rider trip planning and crew scheduling for a complex dynamic mobility service. The resulting optimization problems are extremely challenging computationally for state-of-the-art methods. To address this fundamental gap, this paper introduces the Joint Rider Trip Planning and Crew Shift Scheduling Problem (JRTPCSSP) and a novel solution method, called Attention and Gated GNN-Informed Column Generation (AGGNNI-CG), that hybridizes column generation and machine learning to obtain near-optimal solutions to the JRTPCSSP with real-life constraints of the application. The key idea of the machine-learning component is to dramatically reduce the number of paths to explore in the pricing problem, accelerating the most time-consuming component of the column generation. The machine learning component is a graph neural network with an attention mechanism and a gated architecture, which is particularly suited to cater for the different input sizes coming from daily operations. AGGNNI-CG has been applied to a challenging, real-world dataset from the Paratransit system of Chatham County in Georgia. It produces substantial improvements compared to the baseline column generation approach, which typically cannot produce high-quality feasible solutions in reasonable time on large-scale complex instances. AGGNNI-CG also produces significant improvements in service quality compared to the existing system.

On the Probability of Necessity and Sufficiency of Explaining Graph Neural Networks: A Lower Bound Optimization Approach 2024-12-29
Show

The explainability of Graph Neural Networks (GNNs) is critical to various GNN applications, yet it remains a significant challenge. A convincing explanation should be both necessary and sufficient simultaneously. However, existing GNN explaining approaches focus on only one of the two aspects, necessity or sufficiency, or a heuristic trade-off between the two. Theoretically, the Probability of Necessity and Sufficiency (PNS) holds the potential to identify the most necessary and sufficient explanation since it can mathematically quantify the necessity and sufficiency of an explanation. Nevertheless, the difficulty of obtaining PNS due to non-monotonicity and the challenge of counterfactual estimation limit its wide use. To address the non-identifiability of PNS, we resort to a lower bound of PNS that can be optimized via counterfactual estimation, and propose a framework of Necessary and Sufficient Explanation for GNN (NSEG) via optimizing that lower bound. Specifically, we depict the GNN as a structural causal model (SCM), and estimate the probability of counterfactual via the intervention under the SCM. Additionally, we leverage continuous masks with a sampling strategy to optimize the lower bound to enhance the scalability. Empirical results demonstrate that NSEG outperforms state-of-the-art methods, consistently generating the most necessary and sufficient explanations.

Submi...

Submitted to Neural Networks

NeutronTP: Load-Balanced Distributed Full-Graph GNN Training with Tensor Parallelism 2024-12-29
Show

Graph neural networks (GNNs) have emerged as a promising direction. Training large-scale graphs that relies on distributed computing power poses new challenges. Existing distributed GNN systems leverage data parallelism by partitioning the input graph and distributing it to multiple workers. However, due to the irregular nature of the graph structure, existing distributed approaches suffer from unbalanced workloads and high overhead in managing cross-worker vertex dependencies. In this paper, we leverage tensor parallelism for distributed GNN training. GNN tensor parallelism eliminates cross-worker vertex dependencies by partitioning features instead of graph structures. Different workers are assigned training tasks on different feature slices with the same dimensional size, leading to a complete load balance. We achieve efficient GNN tensor parallelism through two critical functions. Firstly, we employ a generalized decoupled training framework to decouple NN operations from graph aggregation operations, significantly reducing the communication overhead caused by NN operations which must be computed using complete features. Secondly, we employ a memory-efficient task scheduling strategy to support the training of large graphs exceeding single GPU memory, while further improving performance by overlapping communication and computation. By integrating the above techniques, we propose a distributed GNN training system NeutronTP. Our experimental results on a 16-node Aliyun cluster demonstrate that NeutronTP achieves 1.29X-8.72X speedup over state-of-the-art GNN systems including DistDGL, NeutronStar, and Sancus.

14 pa...

14 pages 16 figures, VLDB2025

Learning from Heterogeneity: A Dynamic Learning Framework for Hypergraphs 2024-12-29
Show

Graph neural network (GNN) has gained increasing popularity in recent years owing to its capability and flexibility in modeling complex graph structure data. Among all graph learning methods, hypergraph learning is a technique for exploring the implicit higher-order correlations when training the embedding space of the graph. In this paper, we propose a hypergraph learning framework named LFH that is capable of dynamic hyperedge construction and attentive embedding update utilizing the heterogeneity attributes of the graph. Specifically, in our framework, the high-quality features are first generated by the pairwise fusion strategy that utilizes explicit graph structure information when generating initial node embedding. Afterwards, a hypergraph is constructed through the dynamic grouping of implicit hyperedges, followed by the type-specific hypergraph learning process. To evaluate the effectiveness of our proposed framework, we conduct comprehensive experiments on several popular datasets with eleven state-of-the-art models on both node classification and link prediction tasks, which fall into categories of homogeneous pairwise graph learning, heterogeneous pairwise graph learning, and hypergraph learning. The experiment results demonstrate a significant performance gain (average 12.5% in node classification and 13.3% in link prediction) compared with recent state-of-the-art methods.

Understanding Deep Learning via Notions of Rank 2024-12-28
Show

Despite the extreme popularity of deep learning in science and industry, its formal understanding is limited. This thesis puts forth notions of rank as key for developing a theory of deep learning, focusing on the fundamental aspects of generalization and expressiveness. In particular, we establish that gradient-based training can induce an implicit regularization towards low rank for several neural network architectures, and demonstrate empirically that this phenomenon may facilitate an explanation of generalization over natural data (e.g., audio, images, and text). Then, we characterize the ability of graph neural networks to model interactions via a notion of rank, which is commonly used for quantifying entanglement in quantum physics. A central tool underlying these results is a connection between neural networks and tensor factorizations. Practical implications of our theory for designing explicit regularization schemes and data preprocessing algorithms are presented.

PhD thesis
Towards Ideal Temporal Graph Neural Networks: Evaluations and Conclusions after 10,000 GPU Hours 2024-12-28
Show

Temporal Graph Neural Networks (TGNNs) have emerged as powerful tools for modeling dynamic interactions across various domains. The design space of TGNNs is notably complex, given the unique challenges in runtime efficiency and scalability raised by the evolving nature of temporal graphs. We contend that many of the existing works on TGNN modeling inadequately explore the design space, leading to suboptimal designs. Viewing TGNN models through a performance-focused lens often obstructs a deeper understanding of the advantages and disadvantages of each technique. Specifically, benchmarking efforts inherently evaluate models in their original designs and implementations, resulting in unclear accuracy comparisons and misleading runtime. To address these shortcomings, we propose a practical comparative evaluation framework that performs a design space search across well-known TGNN modules based on a unified, optimized code implementation. Using our framework, we make the first efforts towards addressing three critical questions in TGNN design, spending over 10,000 GPU hours: (1) investigating the efficiency of TGNN module designs, (2) analyzing how the effectiveness of these modules correlates with dataset patterns, and (3) exploring the interplay between multiple modules. Key outcomes of this directed investigative approach include demonstrating that the most recent neighbor sampling and attention aggregator outperform uniform neighbor sampling and MLP-Mixer aggregator; Assessing static node memory as an effective node memory alternative, and showing that the choice between static or dynamic node memory should be based on the repetition patterns in the dataset. Our in-depth analysis of the interplay between TGNN modules and dataset patterns should provide a deeper insight into TGNN performance along with potential research directions for designing more general and effective TGNNs.

Multi-View Empowered Structural Graph Wordification for Language Models 2024-12-28
Show

Significant efforts have been dedicated to integrating the powerful Large Language Models (LLMs) with diverse modalities, particularly focusing on the fusion of language, vision and audio data. However, the graph-structured data, which is inherently rich in structural and domain-specific knowledge, has not yet been gracefully adapted to LLMs. Existing methods either describe the graph with raw text, suffering the loss of graph structural information, or feed Graph Neural Network (GNN) embeddings into LLMs at the cost of losing explainable prompt semantics. To bridge this gap, we introduce an end-to-end modality-aligning framework for LLM-graph alignment: Dual-Residual Vector Quantized-Variational AutoEncoder, namely Dr.E. Our approach is purposefully designed to facilitate token-level alignment with LLMs, enabling an effective translation of the intrinsic `language' of graphs into comprehensible natural language. We also manage to enhance LLMs' more robust structural understanding of graphs by incorporating multiple views of the central nodes based on their surrounding nodes at various distances. Our experimental evaluations on standard graph tasks demonstrate competitive performance against other state-of-the-art (SOTA) approaches. Additionally, our framework ensures certain visual interpretability, efficiency, and robustness, marking the promising successful endeavor to achieve token-level alignment between LLMs and GNNs. Our code is available at: https://github.com/Timothy914/Dr.E.

Cluster-Enhanced Federated Graph Neural Network for Recommendation 2024-12-28
Show

Personal interaction data can be effectively modeled as individual graphs for each user in recommender systems.Graph Neural Networks (GNNs)-based recommendation techniques have become extremely popular since they can capture high-order collaborative signals between users and items by aggregating the individual graph into a global interactive graph.However, this centralized approach inherently poses a threat to user privacy and security. Recently, federated GNN-based recommendation techniques have emerged as a promising solution to mitigate privacy concerns. Nevertheless, current implementations either limit on-device training to an unaccompanied individual graphs or necessitate reliance on an extra third-party server to touch other individual graphs, which also increases the risk of privacy leakage. To address this challenge, we propose a Cluster-enhanced Federated Graph Neural Network framework for Recommendation, named CFedGR, which introduces high-order collaborative signals to augment individual graphs in a privacy preserving manner. Specifically, the server clusters the pretrained user representations to identify high-order collaborative signals. In addition, two efficient strategies are devised to reduce communication between devices and the server. Extensive experiments on three benchmark datasets validate the effectiveness of our proposed methods.

General Geospatial Inference with a Population Dynamics Foundation Model 2024-12-28
Show

Supporting the health and well-being of dynamic populations around the world requires governmental agencies, organizations and researchers to understand and reason over complex relationships between human behavior and local contexts in order to identify high-risk groups and strategically allocate limited resources. Traditional approaches to these classes of problems often entail developing manually curated, task-specific features and models to represent human behavior and the natural and built environment, which can be challenging to adapt to new, or even, related tasks. To address this, we introduce a Population Dynamics Foundation Model (PDFM) that aims to capture the relationships between diverse data modalities and is applicable to a broad range of geospatial tasks. We first construct a geo-indexed dataset for postal codes and counties across the United States, capturing rich aggregated information on human behavior from maps, busyness, and aggregated search trends, and environmental factors such as weather and air quality. We then model this data and the complex relationships between locations using a graph neural network, producing embeddings that can be adapted to a wide range of downstream tasks using relatively simple models. We evaluate the effectiveness of our approach by benchmarking it on 27 downstream tasks spanning three distinct domains: health indicators, socioeconomic factors, and environmental measurements. The approach achieves state-of-the-art performance on all 27 geospatial interpolation tasks, and on 25 out of the 27 extrapolation and super-resolution tasks. We combined the PDFM with a state-of-the-art forecasting foundation model, TimesFM, to predict unemployment and poverty, achieving performance that surpasses fully supervised forecasting. The full set of embeddings and sample code are publicly available for researchers.

28 pa...

28 pages, 16 figures, preprint; v3: updated affiliations

Discrete Curvature Graph Information Bottleneck 2024-12-28
Show

Graph neural networks(GNNs) have been demonstrated to depend on whether the node effective information is sufficiently passing. Discrete curvature (Ricci curvature) is used to study graph connectivity and information propagation efficiency with a geometric perspective, and has been raised in recent years to explore the efficient message-passing structure of GNNs. However, most empirical studies are based on directly observed graph structures or heuristic topological assumptions and lack in-depth exploration of underlying optimal information transport structures for downstream tasks. We suggest that graph curvature optimization is more in-depth and essential than directly rewiring or learning for graph structure with richer message-passing characterization and better information transport interpretability. From both graph geometry and information theory perspectives, we propose the novel Discrete Curvature Graph Information Bottleneck (CurvGIB) framework to optimize the information transport structure and learn better node representations simultaneously. CurvGIB advances the Variational Information Bottleneck (VIB) principle for Ricci curvature optimization to learn the optimal information transport pattern for specific downstream tasks. The learned Ricci curvature is used to refine the optimal transport structure of the graph, and the node representation is fully and efficiently learned. Moreover, for the computational complexity of Ricci curvature differentiation, we combine Ricci flow and VIB to deduce a curvature optimization approximation to form a tractable IB objective function. Extensive experiments on various datasets demonstrate the superior effectiveness and interpretability of CurvGIB.

Accep...

Accepted by the Main Technical Track of the 39th Annual AAAI Conference on Artificial Intelligence (AAAI-2025)

Global Prediction of COVID-19 Variant Emergence Using Dynamics-Informed Graph Neural Networks 2024-12-27
Show

During the COVID-19 pandemic, a major driver of new surges has been the emergence of new variants. When a new variant emerges in one or more countries, other nations monitor its spread in preparation for its potential arrival. The impact of the new variant and the timings of epidemic peaks in a country highly depend on when the variant arrives. The current methods for predicting the spread of new variants rely on statistical modeling, however, these methods work only when the new variant has already arrived in the region of interest and has a significant prevalence. Can we predict when a variant existing elsewhere will arrive in a given region? To address this question, we propose a variant-dynamics-informed Graph Neural Network (GNN) approach. First, we derive the dynamics of variant prevalence across pairs of regions (countries) that apply to a large class of epidemic models. The dynamics motivate the introduction of certain features in the GNN. We demonstrate that our proposed dynamics-informed GNN outperforms all the baselines, including the currently pervasive framework of Physics-Informed Neural Networks (PINNs). To advance research in this area, we introduce a benchmarking tool to assess a user-defined model's prediction performance across 87 countries and 36 variants.

DGNN-YOLO: Interpretable Dynamic Graph Neural Networks with YOLO11 for Small Object Detection and Tracking in Traffic Surveillance 2024-12-27
Show

Accurate detection and tracking of small objects, such as pedestrians, cyclists, and motorbikes, is critical for traffic surveillance systems, which are crucial for improving road safety and decision-making in intelligent transportation systems. However, traditional methods face challenges such as occlusion, low resolution, and dynamic traffic conditions, necessitating innovative approaches to address these limitations. This paper introduces DGNN-YOLO, a novel framework integrating dynamic graph neural networks (DGNN) with YOLO11 to enhance small-object detection and tracking in traffic surveillance systems. The framework leverages YOLO11's advanced spatial feature extraction capabilities for precise object detection and incorporates a DGNN to model spatial-temporal relationships for robust real-time tracking dynamically. By constructing and updating graph structures, DGNN-YOLO effectively represents objects as nodes and their interactions as edges, thereby ensuring adaptive and accurate tracking in complex and dynamic environments. Additionally, Grad-CAM, Grad-CAM++, and Eigen-CAM visualization techniques were applied to DGNN-YOLO to provide model-agnostic interpretability and deeper insights into the model's decision-making process, enhancing its transparency and trustworthiness. Extensive experiments demonstrated that DGNN-YOLO consistently outperformed state-of-the-art methods in detecting and tracking small objects under diverse traffic conditions, achieving the highest precision (0.8382), recall (0.6875), and [email protected]:0.95 (0.6476), showing its robustness and scalability, particularly in challenging scenarios involving small and occluded objects. This study provides a scalable, real-time traffic surveillance and analysis solution, significantly contributing to intelligent transportation systems.

ViDTA: Enhanced Drug-Target Affinity Prediction via Virtual Graph Nodes and Attention-based Feature Fusion 2024-12-27
Show

Drug-target interaction is fundamental in understanding how drugs affect biological systems, and accurately predicting drug-target affinity (DTA) is vital for drug discovery. Recently, deep learning methods have emerged as a significant approach for estimating the binding strength between drugs and target proteins. However, existing methods simply utilize the drug's local information from molecular topology rather than global information. Additionally, the features of drugs and proteins are usually fused with a simple concatenation operation, limiting their effectiveness. To address these challenges, we proposed ViDTA, an enhanced DTA prediction framework. We introduce virtual nodes into the Graph Neural Network (GNN)-based drug feature extraction network, which acts as a global memory to exchange messages more efficiently. By incorporating virtual graph nodes, we seamlessly integrate local and global features of drug molecular structures, expanding the GNN's receptive field. Additionally, we propose an attention-based linear feature fusion network for better capturing the interaction information between drugs and proteins. Experimental results evaluated on various benchmarks including Davis, Metz, and KIBA demonstrate that our proposed ViDTA outperforms the state-of-the-art baselines.

Accep...

Accepted by International Conference on Bioinformatics and Biomedicine (BIBM 24)

Introduction to Graph Neural Networks: A Starting Point for Machine Learning Engineers 2024-12-27
Show

Graph neural networks are deep neural networks designed for graphs with attributes attached to nodes or edges. The number of research papers in the literature concerning these models is growing rapidly due to their impressive performance on a broad range of tasks. This survey introduces graph neural networks through the encoder-decoder framework and provides examples of decoders for a range of graph analytic tasks. It uses theory and numerous experiments on homogeneous graphs to illustrate the behavior of graph neural networks for different training sizes and degrees of graph complexity.

Virtual Nodes Can Help: Tackling Distribution Shifts in Federated Graph Learning 2024-12-26
Show

Federated Graph Learning (FGL) enables multiple clients to jointly train powerful graph learning models, e.g., Graph Neural Networks (GNNs), without sharing their local graph data for graph-related downstream tasks, such as graph property prediction. In the real world, however, the graph data can suffer from significant distribution shifts across clients as the clients may collect their graph data for different purposes. In particular, graph properties are usually associated with invariant label-relevant substructures (i.e., subgraphs) across clients, while label-irrelevant substructures can appear in a client-specific manner. The issue of distribution shifts of graph data hinders the efficiency of GNN training and leads to serious performance degradation in FGL. To tackle the aforementioned issue, we propose a novel FGL framework entitled FedVN that eliminates distribution shifts through client-specific graph augmentation strategies with multiple learnable Virtual Nodes (VNs). Specifically, FedVN lets the clients jointly learn a set of shared VNs while training a global GNN model. To eliminate distribution shifts, each client trains a personalized edge generator that determines how the VNs connect local graphs in a client-specific manner. Furthermore, we provide theoretical analyses indicating that FedVN can eliminate distribution shifts of graph data across clients. Comprehensive experiments on four datasets under five settings demonstrate the superiority of our proposed FedVN over nine baselines.

Accep...

Accepted by AAAI 2025

Large Language Models Meet Graph Neural Networks: A Perspective of Graph Mining 2024-12-26
Show

Graph mining is an important area in data mining and machine learning that involves extracting valuable information from graph-structured data. In recent years, significant progress has been made in this field through the development of graph neural networks (GNNs). However, GNNs are still deficient in generalizing to diverse graph data. Aiming to this issue, Large Language Models (LLMs) could provide new solutions for graph mining tasks with their superior semantic understanding. In this review, we systematically review the combination and application techniques of LLMs and GNNs and present a novel taxonomy for research in this interdisciplinary field, which involves three main categories: GNN-driving-LLM, LLM-driving-GNN, and GNN-LLM-co-driving. Within this framework, we reveal the capabilities of LLMs in enhancing graph feature extraction as well as improving the effectiveness of downstream tasks such as node classification, link prediction, and community detection. Although LLMs have demonstrated their great potential in handling graph-structured data, their high computational requirements and complexity remain challenges. Future research needs to continue to explore how to efficiently fuse LLMs and GNNs to achieve more powerful graph learning and reasoning capabilities and provide new impetus for the development of graph mining techniques.

ERGNN: Spectral Graph Neural Network with Explicitly-optimized Rational Graph Filters 2024-12-26
Show

Approximation-based spectral graph neural networks, which construct graph filters with function approximation, have shown substantial performance in graph learning tasks. Despite their great success, existing works primarily employ polynomial approximation to construct the filters, whereas another superior option, namely ration approximation, remains underexplored. Although a handful of prior works have attempted to deploy the rational approximation, their implementations often involve intensive computational demands or still resort to polynomial approximations, hindering full potential of the rational graph filters. To address the issues, this paper introduces ERGNN, a novel spectral GNN with explicitly-optimized rational filter. ERGNN adopts a unique two-step framework that sequentially applies the numerator filter and the denominator filter to the input signals, thus streamlining the model paradigm while enabling explicit optimization of both numerator and denominator of the rational filter. Extensive experiments validate the superiority of ERGNN over state-of-the-art methods, establishing it as a practical solution for deploying rational-based GNNs.

Accep...

Accepted in 2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025

Adversarial Training for Graph Neural Networks via Graph Subspace Energy Optimization 2024-12-25
Show

Despite impressive capability in learning over graph-structured data, graph neural networks (GNN) suffer from adversarial topology perturbation in both training and inference phases. While adversarial training has demonstrated remarkable effectiveness in image classification tasks, its suitability for GNN models has been doubted until a recent advance that shifts the focus from transductive to inductive learning. Still, GNN robustness in the inductive setting is under-explored, and it calls for deeper understanding of GNN adversarial training. To this end, we propose a new concept of graph subspace energy (GSE) -- a generalization of graph energy that measures graph stability -- of the adjacency matrix, as an indicator of GNN robustness against topology perturbations. To further demonstrate the effectiveness of such concept, we propose an adversarial training method with the perturbed graphs generated by maximizing the GSE regularization term, referred to as AT-GSE. To deal with the local and global topology perturbations raised respectively by LRBCD and PRBCD, we employ randomized SVD (RndSVD) and Nystrom low-rank approximation to favor the different aspects of the GSE terms. An extensive set of experiments shows that AT-GSE outperforms consistently the state-of-the-art GNN adversarial training methods over different homophily and heterophily datasets in terms of adversarial accuracy, whilst more surprisingly achieving a superior clean accuracy on non-perturbed graphs.

Enhancing Federated Graph Learning via Adaptive Fusion of Structural and Node Characteristics 2024-12-25
Show

Federated Graph Learning (FGL) has demonstrated the advantage of training a global Graph Neural Network (GNN) model across distributed clients using their local graph data. Unlike Euclidean data (\eg, images), graph data is composed of nodes and edges, where the overall node-edge connections determine the topological structure, and individual nodes along with their neighbors capture local node features. However, existing studies tend to prioritize one aspect over the other, leading to an incomplete understanding of the data and the potential misidentification of key characteristics across varying graph scenarios. Additionally, the non-independent and identically distributed (non-IID) nature of graph data makes the extraction of these two data characteristics even more challenging. To address the above issues, we propose a novel FGL framework, named FedGCF, which aims to simultaneously extract and fuse structural properties and node features to effectively handle diverse graph scenarios. FedGCF first clusters clients by structural similarity, performing model aggregation within each cluster to form the shared structural model. Next, FedGCF selects the clients with common node features and aggregates their models to generate a common node model. This model is then propagated to all clients, allowing common node features to be shared. By combining these two models with a proper ratio, FedGCF can achieve a comprehensive understanding of the graph data and deliver better performance, even under non-IID distributions. Experimental results show that FedGCF improves accuracy by 4.94%-7.24% under different data distributions and reduces communication cost by 64.18%-81.25% to reach the same accuracy compared to baselines.

Hierarchical Multi-Graphs Learning for Robust Group Re-Identification 2024-12-25
Show

Group Re-identification (G-ReID) faces greater complexity than individual Re-identification (ReID) due to challenges like mutual occlusion, dynamic member interactions, and evolving group structures. Prior graph-based approaches have aimed to capture these dynamics by modeling the group as a single topological structure. However, these methods struggle to generalize across diverse group compositions, as they fail to fully represent the multifaceted relationships within the group. In this study, we introduce a Hierarchical Multi-Graphs Learning (HMGL) framework to address these challenges. Our approach models the group as a collection of multi-relational graphs, leveraging both explicit features (such as occlusion, appearance, and foreground information) and implicit dependencies between members. This hierarchical representation, encoded via a Multi-Graphs Neural Network (MGNN), allows us to resolve ambiguities in member relationships, particularly in complex, densely populated scenes. To further enhance matching accuracy, we propose a Multi-Scale Matching (MSM) algorithm, which mitigates issues of member information ambiguity and sensitivity to hard samples, improving robustness in challenging scenarios. Our method achieves state-of-the-art performance on two standard benchmarks, CSG and RoadGroup, with Rank-1/mAP scores of 95.3%/94.4% and 93.9%/95.4%, respectively. These results mark notable improvements of 1.7% and 2.5% in Rank-1 accuracy over existing approaches.

Predicting Time Series of Networked Dynamical Systems without Knowing Topology 2024-12-25
Show

Many real-world complex systems, such as epidemic spreading networks and ecosystems, can be modeled as networked dynamical systems that produce multivariate time series. Learning the intrinsic dynamics from observational data is pivotal for forecasting system behaviors and making informed decisions. However, existing methods for modeling networked time series often assume known topologies, whereas real-world networks are typically incomplete or inaccurate, with missing or spurious links that hinder precise predictions. Moreover, while networked time series often originate from diverse topologies, the ability of models to generalize across topologies has not been systematically evaluated. To address these gaps, we propose a novel framework for learning network dynamics directly from observed time-series data, when prior knowledge of graph topology or governing dynamical equations is absent. Our approach leverages continuous graph neural networks with an attention mechanism to construct a latent topology, enabling accurate reconstruction of future trajectories for network states. Extensive experiments on real and synthetic networks demonstrate that our model not only captures dynamics effectively without topology knowledge but also generalizes to unseen time series originating from diverse topologies.

Effective and Lightweight Representation Learning for Link Sign Prediction in Signed Bipartite Graphs 2024-12-25
Show

How can we effectively and efficiently learn node representations in signed bipartite graphs? A signed bipartite graph is a graph consisting of two nodes sets where nodes of different types are positively or negative connected, and it has been extensively used to model various real-world relationships such as e-commerce, etc. To analyze such a graph, previous studies have focused on designing methods for learning node representations using graph neural networks. In particular, these methods insert edges between nodes of the same type based on balance theory, enabling them to leverage augmented structures in their learning. However, the existing methods rely on a naive message passing design, which is prone to over-smoothing and susceptible to noisy interactions in real-world graphs. Furthermore, they suffer from computational inefficiency due to their heavy design and the significant increase in the number of added edges. In this paper, we propose ELISE, an effective and lightweight GNN-based approach for learning signed bipartite graphs. We first extend personalized propagation to a signed bipartite graph, incorporating signed edges during message passing. This extension adheres to balance theory without introducing additional edges, mitigating the over-smoothing issue and enhancing representation power. We then jointly learn node embeddings on a low-rank approximation of the signed bipartite graph, which reduces potential noise and emphasizes its global structure, further improving expressiveness without significant loss of efficiency. We encapsulate these ideas into ELISE, designing it to be lightweight, unlike the previous methods that add too many edges and cause inefficiency. Through extensive experiments on real-world signed bipartite graphs, we demonstrate that ELISE outperforms its competitors for predicting link signs while providing faster training and inference time.

3D Extended Target Sensing in ISAC: Cramér-Rao Bound Analysis and Beamforming Design 2024-12-24
Show

This paper investigates an integrated sensing and communication (ISAC) system where the sensing target is a three-dimensional (3D) extended target, for which multiple scatterers from the target surface can be resolved. We first introduce a second-order truncated Fourier series surface model for an arbitrarily-shaped 3D ET. Utilizing this model, we derive tractable Cramer-Rao bounds (CRBs) for estimating the ET kinematic parameters, including the center range, azimuth, elevation, and orientation. These CRBs depend explicitly on the transmit covariance matrix and ET shape. Then we formulate two transmit beamforming optimization problems for the base station (BS) to simultaneously support communication with multiple users and sensing of the 3D ET. The first minimizes the sensing CRB while ensuring a minimum signal-to-interference-plus-noise ratio (SINR) for each user, and it is solved using semidefinite relaxation. The second balances minimizing the CRB and maximizing communication rates through a weight factor, and is solved via successive convex approximation. To reduce the computational complexity, we further propose ISACBeam-GNN, a novel graph neural network-based beamforming method that employs a separate-then-integrate structure, learning communication and sensing (C&S) objectives independently before integrating them to balance C&S trade-offs. Simulation results show that the proposed beamforming designs that account for ET shapes significantly outperform existing baselines, offering better communication-sensing performance trade-offs as well as an improved beampattern for sensing. Results also demonstrate that ISACBeam-GNN is an efficient alternative to the optimization-based methods, with remarkable adaptability and scalability.

13 pa...

13 pages, 9 figures, partially published in IEEE Global Communications Conference 2024

Graph Neural Networks Are Evolutionary Algorithms 2024-12-24
Show

In this paper, we reveal the intrinsic duality between graph neural networks (GNNs) and evolutionary algorithms (EAs), bridging two traditionally distinct fields. Building on this insight, we propose Graph Neural Evolution (GNE), a novel evolutionary algorithm that models individuals as nodes in a graph and leverages designed frequency-domain filters to balance global exploration and local exploitation. Through the use of these filters, GNE aggregates high-frequency (diversity-enhancing) and low-frequency (stability-promoting) information, transforming EAs into interpretable and tunable mechanisms in the frequency domain. Extensive experiments on benchmark functions demonstrate that GNE consistently outperforms state-of-the-art algorithms such as GA, DE, CMA-ES, SDAES, and RL-SHADE, excelling in complex landscapes, optimal solution shifts, and noisy environments. Its robustness, adaptability, and superior convergence highlight its practical and theoretical value. Beyond optimization, GNE establishes a conceptual and mathematical foundation linking EAs and GNNs, offering new perspectives for both fields. Its framework encourages the development of task-adaptive filters and hybrid approaches for EAs, while its insights can inspire advances in GNNs, such as improved global information propagation and mitigation of oversmoothing. GNE's versatility extends to solving challenges in machine learning, including hyperparameter tuning and neural architecture search, as well as real-world applications in engineering and operations research. By uniting the dynamics of EAs with the structural insights of GNNs, this work provides a foundation for interdisciplinary innovation, paving the way for scalable and interpretable solutions to complex optimization problems.

31 pages, 10 figures
Unveiling the Threat of Fraud Gangs to Graph Neural Networks: Multi-Target Graph Injection Attacks against GNN-Based Fraud Detectors 2024-12-24
Show

Graph neural networks (GNNs) have emerged as an effective tool for fraud detection, identifying fraudulent users, and uncovering malicious behaviors. However, attacks against GNN-based fraud detectors and their risks have rarely been studied, thereby leaving potential threats unaddressed. Recent findings suggest that frauds are increasingly organized as gangs or groups. In this work, we design attack scenarios where fraud gangs aim to make their fraud nodes misclassified as benign by camouflaging their illicit activities in collusion. Based on these scenarios, we study adversarial attacks against GNN-based fraud detectors by simulating attacks of fraud gangs in three real-world fraud cases: spam reviews, fake news, and medical insurance frauds. We define these attacks as multi-target graph injection attacks and propose MonTi, a transformer-based Multi-target one-Time graph injection attack model. MonTi simultaneously generates attributes and edges of all attack nodes with a transformer encoder, capturing interdependencies between attributes and edges more effectively than most existing graph injection attack methods that generate these elements sequentially. Additionally, MonTi adaptively allocates the degree budget for each attack node to explore diverse injection structures involving target, candidate, and attack nodes, unlike existing methods that fix the degree budget across all attack nodes. Experiments show that MonTi outperforms the state-of-the-art graph injection attack methods on five real-world graphs.

19 pa...

19 pages, 5 figures, 12 tables, The 39th AAAI Conference on Artificial Intelligence (AAAI 2025)

InstaGraM: Instance-level Graph Modeling for Vectorized HD Map Learning 2024-12-24
Show

For scalable autonomous driving, a robust map-based localization system, independent of GPS, is fundamental. To achieve such map-based localization, online high-definition (HD) map construction plays a significant role in accurate estimation of the pose. Although recent advancements in online HD map construction have predominantly investigated on vectorized representation due to its effectiveness, they suffer from computational cost and fixed parametric model, which limit scalability. To alleviate these limitations, we propose a novel HD map learning framework that leverages graph modeling. This framework is designed to learn the construction of diverse geometric shapes, thereby enhancing the scalability of HD map construction. Our approach involves representing the map elements as an instance-level graph by decomposing them into vertices and edges to facilitate accurate and efficient end-to-end vectorized HD map learning. Furthermore, we introduce an association strategy using a Graph Neural Network to efficiently handle the complex geometry of various map elements, while maintaining scalability. Comprehensive experiments on public open dataset show that our proposed network outperforms state-of-the-art model by $1.6$ mAP. We further showcase the superior scalability of our approach compared to state-of-the-art methods, achieving a $4.8$ mAP improvement in long range configuration. Our code is available at https://github.com/juyebshin/InstaGraM.

Code ...

Code available at https://github.com/juyebshin/InstaGraM

Semi-supervised Credit Card Fraud Detection via Attribute-Driven Graph Representation 2024-12-24
Show

Credit card fraud incurs a considerable cost for both cardholders and issuing banks. Contemporary methods apply machine learning-based classifiers to detect fraudulent behavior from labeled transaction records. But labeled data are usually a small proportion of billions of real transactions due to expensive labeling costs, which implies that they do not well exploit many natural features from unlabeled data. Therefore, we propose a semi-supervised graph neural network for fraud detection. Specifically, we leverage transaction records to construct a temporal transaction graph, which is composed of temporal transactions (nodes) and interactions (edges) among them. Then we pass messages among the nodes through a Gated Temporal Attention Network (GTAN) to learn the transaction representation. We further model the fraud patterns through risk propagation among transactions. The extensive experiments are conducted on a real-world transaction dataset and two publicly available fraud detection datasets. The result shows that our proposed method, namely GTAN, outperforms other state-of-the-art baselines on three fraud detection datasets. Semi-supervised experiments demonstrate the excellent fraud detection performance of our model with only a tiny proportion of labeled data.

9 pag...

9 pages, 5 figures, AAAI 2023, code: https://github.com/AI4Risk/antifraud

NoiseHGNN: Synthesized Similarity Graph-Based Neural Network For Noised Heterogeneous Graph Representation Learning 2024-12-24
Show

Real-world graph data environments intrinsically exist noise (e.g., link and structure errors) that inevitably disturb the effectiveness of graph representation and downstream learning tasks. For homogeneous graphs, the latest works use original node features to synthesize a similarity graph that can correct the structure of the noised graph. This idea is based on the homogeneity assumption, which states that similar nodes in the homogeneous graph tend to have direct links in the original graph. However, similar nodes in heterogeneous graphs usually do not have direct links, which can not be used to correct the original noise graph. This causes a significant challenge in noised heterogeneous graph learning. To this end, this paper proposes a novel synthesized similarity-based graph neural network compatible with noised heterogeneous graph learning. First, we calculate the original feature similarities of all nodes to synthesize a similarity-based high-order graph. Second, we propose a similarity-aware encoder to embed original and synthesized graphs with shared parameters. Then, instead of graph-to-graph supervising, we synchronously supervise the original and synthesized graph embeddings to predict the same labels. Meanwhile, a target-based graph extracted from the synthesized graph contrasts the structure of the metapath-based graph extracted from the original graph to learn the mutual information. Extensive experiments in numerous real-world datasets show the proposed method achieves state-of-the-art records in the noised heterogeneous graph learning tasks. In highlights, +5$\sim$6% improvements are observed in several noised datasets compared with previous SOTA methods. The code and datasets are available at https://github.com/kg-cc/NoiseHGNN.

AAAI2025
An Automatic Graph Construction Framework based on Large Language Models for Recommendation 2024-12-24
Show

Graph neural networks (GNNs) have emerged as state-of-the-art methods to learn from graph-structured data for recommendation. However, most existing GNN-based recommendation methods focus on the optimization of model structures and learning strategies based on pre-defined graphs, neglecting the importance of the graph construction stage. Earlier works for graph construction usually rely on speciffic rules or crowdsourcing, which are either too simplistic or too labor-intensive. Recent works start to utilize large language models (LLMs) to automate the graph construction, in view of their abundant open-world knowledge and remarkable reasoning capabilities. Nevertheless, they generally suffer from two limitations: (1) invisibility of global view (e.g., overlooking contextual information) and (2) construction inefficiency. To this end, we introduce AutoGraph, an automatic graph construction framework based on LLMs for recommendation. Specifically, we first use LLMs to infer the user preference and item knowledge, which is encoded as semantic vectors. Next, we employ vector quantization to extract the latent factors from the semantic vectors. The latent factors are then incorporated as extra nodes to link the user/item nodes, resulting in a graph with in-depth global-view semantics. We further design metapath-based message aggregation to effectively aggregate the semantic and collaborative information. The framework is model-agnostic and compatible with different backbone models. Extensive experiments on three real-world datasets demonstrate the efficacy and efffciency of AutoGraph compared to existing baseline methods. We have deployed AutoGraph in Huawei advertising platform, and gain a 2.69% improvement on RPM and a 7.31% improvement on eCPM in the online A/B test. Currently AutoGraph has been used as the main trafffc model, serving hundreds of millions of people.

Under review
Graph Construction with Flexible Nodes for Traffic Demand Prediction 2024-12-24
Show

Graph neural networks (GNNs) have been widely applied in traffic demand prediction, and transportation modes can be divided into station-based mode and free-floating traffic mode. Existing research in traffic graph construction primarily relies on map matching to construct graphs based on the road network. However, the complexity and inhomogeneity of data distribution in free-floating traffic demand forecasting make road network matching inflexible. To tackle these challenges, this paper introduces a novel graph construction method tailored to free-floating traffic mode. We propose a novel density-based clustering algorithm (HDPC-L) to determine the flexible positioning of nodes in the graph, overcoming the computational bottlenecks of traditional clustering algorithms and enabling effective handling of large-scale datasets. Furthermore, we extract valuable information from ridership data to initialize the edge weights of GNNs. Comprehensive experiments on two real-world datasets, the Shenzhen bike-sharing dataset and the Haikou ride-hailing dataset, show that the method significantly improves the performance of the model. On average, our models show an improvement in accuracy of around 25% and 19.5% on the two datasets. Additionally, it significantly enhances computational efficiency, reducing training time by approximately 12% and 32.5% on the two datasets. We make our code available at https://github.com/houjinyan/HDPC-L-ODInit.

We ha...

We have decided to withdraw this paper temporarily as we have identified areas that require further refinement and additional research. Our goal is to ensure the highest quality and accuracy of our work before it is made available to the broader academic community. We appreciate your understanding and will submit an updated version once these improvements have been completed

Can Large Language Models Improve the Adversarial Robustness of Graph Neural Networks? 2024-12-24
Show

Graph neural networks (GNNs) are vulnerable to adversarial attacks, especially for topology perturbations, and many methods that improve the robustness of GNNs have received considerable attention. Recently, we have witnessed the significant success of large language models (LLMs), leading many to explore the great potential of LLMs on GNNs. However, they mainly focus on improving the performance of GNNs by utilizing LLMs to enhance the node features. Therefore, we ask: Will the robustness of GNNs also be enhanced with the powerful understanding and inference capabilities of LLMs? By presenting the empirical results, we find that despite that LLMs can improve the robustness of GNNs, there is still an average decrease of 23.1% in accuracy, implying that the GNNs remain extremely vulnerable against topology attacks. Therefore, another question is how to extend the capabilities of LLMs on graph adversarial robustness. In this paper, we propose an LLM-based robust graph structure inference framework, LLM4RGNN, which distills the inference capabilities of GPT-4 into a local LLM for identifying malicious edges and an LM-based edge predictor for finding missing important edges, so as to recover a robust graph structure. Extensive experiments demonstrate that LLM4RGNN consistently improves the robustness across various GNNs. Even in some cases where the perturbation ratio increases to 40%, the accuracy of GNNs is still better than that on the clean graph. The source code can be found in https://github.com/zhongjian-zhang/LLM4RGNN.

accepted by KDD 2025
GIMS: Image Matching System Based on Adaptive Graph Construction and Graph Neural Network 2024-12-24
Show

Feature-based image matching has extensive applications in computer vision. Keypoints detected in images can be naturally represented as graph structures, and Graph Neural Networks (GNNs) have been shown to outperform traditional deep learning techniques. Consequently, the paradigm of image matching via GNNs has gained significant prominence in recent academic research. In this paper, we first introduce an innovative adaptive graph construction method that utilizes a filtering mechanism based on distance and dynamic threshold similarity. This method dynamically adjusts the criteria for incorporating new vertices based on the characteristics of existing vertices, allowing for the construction of more precise and robust graph structures while avoiding redundancy. We further combine the vertex processing capabilities of GNNs with the global awareness capabilities of Transformers to enhance the model's representation of spatial and feature information within graph structures. This hybrid model provides a deeper understanding of the interrelationships between vertices and their contributions to the matching process. Additionally, we employ the Sinkhorn algorithm to iteratively solve for optimal matching results. Finally, we validate our system using extensive image datasets and conduct comprehensive comparative experiments. Experimental results demonstrate that our system achieves an average improvement of 3.8x-40.3x in overall matching performance. Additionally, the number of vertices and edges significantly impacts training efficiency and memory usage; therefore, we employ multi-GPU technology to accelerate the training process. Our code is available at https://github.com/songxf1024/GIMS.

Cross-Attention Graph Neural Networks for Inferring Gene Regulatory Networks with Skewed Degree Distribution 2024-12-24
Show

Inferencing Gene Regulatory Networks (GRNs) from gene expression data is a pivotal challenge in systems biology, and several innovative computational methods have been introduced. However, most of these studies have not considered the skewed degree distribution of genes. Specifically, some genes may regulate multiple target genes while some genes may be regulated by multiple regulator genes. Such a skewed degree distribution issue significantly complicates the application of directed graph embedding methods. To tackle this issue, we propose the Cross-Attention Complex Dual Graph Embedding Model (XATGRN). Our XATGRN employs a cross-attention mechanism to effectively capture intricate gene interactions from gene expression profiles. Additionally, it uses a Dual Complex Graph Embedding approach to manage the skewed degree distribution, thereby ensuring precise prediction of regulatory relationships and their directionality. Our model consistently outperforms existing state-of-the-art methods across various datasets, underscoring its efficacy in elucidating complex gene regulatory mechanisms. Our codes used in this paper are publicly available at: https://github.com/kikixiong/XATGRN.

11 pa...

11 pages, 6 figures,1 tabels

Exact Acceleration of Subgraph Graph Neural Networks by Eliminating Computation Redundancy 2024-12-24
Show

Graph neural networks (GNNs) have become a prevalent framework for graph tasks. Many recent studies have proposed the use of graph convolution methods over the numerous subgraphs of each graph, a concept known as subgraph graph neural networks (subgraph GNNs), to enhance GNNs' ability to distinguish non-isomorphic graphs. To maximize the expressiveness, subgraph GNNs often require each subgraph to have equal size to the original graph. Despite their impressive performance, subgraph GNNs face challenges due to the vast number and large size of subgraphs which lead to a surge in training data, resulting in both storage and computational inefficiencies. In response to this problem, this paper introduces Ego-Nets-Fit-All (ENFA), a model that uniformly takes the smaller ego nets as subgraphs, thereby providing greater storage and computational efficiency, while at the same time guarantees identical outputs to the original subgraph GNNs even taking the whole graph as subgraphs. The key is to identify and eliminate the redundant computation among subgraphs. For example, a node $v_i$ may appear in multiple subgraphs but is far away from all of their centers (the unsymmetric part between subgraphs). Therefore, its first few rounds of message passing within each subgraph can be computed once in the original graph instead of being computed multiple times within each subgraph. Such strategy enables our ENFA to accelerate subgraph GNNs in an exact way, unlike previous sampling approaches that often lose the performance. Extensive experiments across various datasets reveal that compared with the conventional subgraph GNNs, ENFA can reduce storage space by 29.0% to 84.5% and improve training efficiency by up to 1.66x.

Extending Graph Condensation to Multi-Label Datasets: A Benchmark Study 2024-12-23
Show

As graph data grows increasingly complicate, training graph neural networks (GNNs) on large-scale datasets presents significant challenges, including computational resource constraints, data redundancy, and transmission inefficiencies. While existing graph condensation techniques have shown promise in addressing these issues, they are predominantly designed for single-label datasets, where each node is associated with a single class label. However, many real-world applications, such as social network analysis and bioinformatics, involve multi-label graph datasets, where one node can have various related labels. To deal with this problem, we extends traditional graph condensation approaches to accommodate multi-label datasets by introducing modifications to synthetic dataset initialization and condensing optimization. Through experiments on eight real-world multi-label graph datasets, we prove the effectiveness of our method. In experiment, the GCond framework, combined with K-Center initialization and binary cross-entropy loss (BCELoss), achieves best performance in general. This benchmark for multi-label graph condensation not only enhances the scalability and efficiency of GNNs for multi-label graph data, but also offering substantial benefits for diverse real-world applications.

TransferLight: Zero-Shot Traffic Signal Control on any Road-Network 2024-12-23
Show

Traffic signal control plays a crucial role in urban mobility. However, existing methods often struggle to generalize beyond their training environments to unseen scenarios with varying traffic dynamics. We present TransferLight, a novel framework designed for robust generalization across road-networks, diverse traffic conditions and intersection geometries. At its core, we propose a log-distance reward function, offering spatially-aware signal prioritization while remaining adaptable to varied lane configurations - overcoming the limitations of traditional pressure-based rewards. Our hierarchical, heterogeneous, and directed graph neural network architecture effectively captures granular traffic dynamics, enabling transferability to arbitrary intersection layouts. Using a decentralized multi-agent approach, global rewards, and novel state transition priors, we develop a single, weight-tied policy that scales zero-shot to any road network without re-training. Through domain randomization during training, we additionally enhance generalization capabilities. Experimental results validate TransferLight's superior performance in unseen scenarios, advancing practical, generalizable intelligent transportation systems to meet evolving urban traffic demands.

AAAI ...

AAAI Workshop Paper (MALTA)

LASE: Learned Adjacency Spectral Embeddings 2024-12-23
Show

We put forth a principled design of a neural architecture to learn nodal Adjacency Spectral Embeddings (ASE) from graph inputs. By bringing to bear the gradient descent (GD) method and leveraging the principle of algorithm unrolling, we truncate and re-interpret each GD iteration as a layer in a graph neural network (GNN) that is trained to approximate the ASE. Accordingly, we call the resulting embeddings and our parametric model Learned ASE (LASE), which is interpretable, parameter efficient, robust to inputs with unobserved edges, and offers controllable complexity during inference. LASE layers combine Graph Convolutional Network (GCN) and fully-connected Graph Attention Network (GAT) modules, which is intuitively pleasing since GCN-based local aggregations alone are insufficient to express the sought graph eigenvectors. We propose several refinements to the unrolled LASE architecture (such as sparse attention in the GAT module and decoupled layerwise parameters) that offer favorable approximation error versus computation tradeoffs; even outperforming heavily-optimized eigendecomposition routines from scientific computing libraries. Because LASE is a differentiable function with respect to its parameters as well as its graph input, we can seamlessly integrate it as a trainable module within a larger (semi-)supervised graph representation learning pipeline. The resulting end-to-end system effectively learns ``discriminative ASEs'' that exhibit competitive performance in supervised link prediction and node classification tasks, outperforming a GNN even when the latter is endowed with open loop, meaning task-agnostic, precomputed spectral positional encodings.

Towards Foundation Models on Graphs: An Analysis on Cross-Dataset Transfer of Pretrained GNNs 2024-12-23
Show

To develop a preliminary understanding towards Graph Foundation Models, we study the extent to which pretrained Graph Neural Networks can be applied across datasets, an effort requiring to be agnostic to dataset-specific features and their encodings. We build upon a purely structural pretraining approach and propose an extension to capture feature information while still being feature-agnostic. We evaluate pretrained models on downstream tasks for varying amounts of training samples and choices of pretraining datasets. Our preliminary results indicate that embeddings from pretrained models improve generalization only with enough downstream data points and in a degree which depends on the quantity and properties of pretraining data. Feature information can lead to improvements, but currently requires some similarities between pretraining and downstream feature spaces.

Accep...

Accepted and presented at the NeurIPS 2024 workshop "Symmetry and Geometry in Neural Representations" (NeuReps 2024)

Graph Size-imbalanced Learning with Energy-guided Structural Smoothing 2024-12-23
Show

Graph is a prevalent data structure employed to represent the relationships between entities, frequently serving as a tool to depict and simulate numerous systems, such as molecules and social networks. However, real-world graphs usually suffer from the size-imbalanced problem in the multi-graph classification, i.e., a long-tailed distribution with respect to the number of nodes. Recent studies find that off-the-shelf Graph Neural Networks (GNNs) would compromise model performance under the long-tailed settings. We investigate this phenomenon and discover that the long-tailed graph distribution greatly exacerbates the discrepancies in structural features. To alleviate this problem, we propose a novel energy-based size-imbalanced learning framework named \textbf{SIMBA}, which smooths the features between head and tail graphs and re-weights them based on the energy propagation. Specifically, we construct a higher-level graph abstraction named \textit{Graphs-to-Graph} according to the correlations between graphs to link independent graphs and smooths the structural discrepancies. We further devise an energy-based message-passing belief propagation method for re-weighting lower compatible graphs in the training process and further smooth local feature discrepancies. Extensive experimental results over five public size-imbalanced datasets demonstrate the superior effectiveness of the model for size-imbalanced graph classification tasks.

Accep...

Accepted by the 18th ACM International Conference on Web Search and Data Mining (WSDM'25)

TempoKGAT: A Novel Graph Attention Network Approach for Temporal Graph Analysis 2024-12-23
Show

Graph neural networks (GNN) have shown significant capabilities in handling structured data, yet their application to dynamic, temporal data remains limited. This paper presents a new type of graph attention network, called TempoKGAT, which combines time-decaying weight and a selective neighbor aggregation mechanism on the spatial domain, which helps uncover latent patterns in the graph data. In this approach, a top-k neighbor selection based on the edge weights is introduced to represent the evolving features of the graph data. We evaluated the performance of our TempoKGAT on multiple datasets from the traffic, energy, and health sectors involving spatio-temporal data. We compared the performance of our approach to several state-of-the-art methods found in the literature on several open-source datasets. Our method shows superior accuracy on all datasets. These results indicate that TempoKGAT builds on existing methodologies to optimize prediction accuracy and provide new insights into model interpretation in temporal contexts.

Line Graph Vietoris-Rips Persistence Diagram for Topological Graph Representation Learning 2024-12-23
Show

While message passing graph neural networks result in informative node embeddings, they may suffer from describing the topological properties of graphs. To this end, node filtration has been widely used as an attempt to obtain the topological information of a graph using persistence diagrams. However, these attempts have faced the problem of losing node embedding information, which in turn prevents them from providing a more expressive graph representation. To tackle this issue, we shift our focus to edge filtration and introduce a novel edge filtration-based persistence diagram, named Topological Edge Diagram (TED), which is mathematically proven to preserve node embedding information as well as contain additional topological information. To implement TED, we propose a neural network based algorithm, named Line Graph Vietoris-Rips (LGVR) Persistence Diagram, that extracts edge information by transforming a graph into its line graph. Through LGVR, we propose two model frameworks that can be applied to any message passing GNNs, and prove that they are strictly more powerful than Weisfeiler-Lehman type colorings. Finally we empirically validate superior performance of our models on several graph classification and regression benchmarks.

36 pa...

36 pages. Accepted to Journal of Machine Learning Research

BrainMAP: Learning Multiple Activation Pathways in Brain Networks 2024-12-23
Show

Functional Magnetic Resonance Image (fMRI) is commonly employed to study human brain activity, since it offers insight into the relationship between functional fluctuations and human behavior. To enhance analysis and comprehension of brain activity, Graph Neural Networks (GNNs) have been widely applied to the analysis of functional connectivities (FC) derived from fMRI data, due to their ability to capture the synergistic interactions among brain regions. However, in the human brain, performing complex tasks typically involves the activation of certain pathways, which could be represented as paths across graphs. As such, conventional GNNs struggle to learn from these pathways due to the long-range dependencies of multiple pathways. To address these challenges, we introduce a novel framework BrainMAP to learn Multiple Activation Pathways in Brain networks. BrainMAP leverages sequential models to identify long-range correlations among sequentialized brain regions and incorporates an aggregation module based on Mixture of Experts (MoE) to learn from multiple pathways. Our comprehensive experiments highlight BrainMAP's superior performance. Furthermore, our framework enables explanatory analyses of crucial brain regions involved in tasks. Our code is provided at https://github.com/LzyFischer/Graph-Mamba.

AAAI 2025
ORIGAMI: A generative transformer architecture for predictions from semi-structured data 2024-12-23
Show

Despite the popularity and widespread use of semi-structured data formats such as JSON, end-to-end supervised learning applied directly to such data remains underexplored. We present ORIGAMI (Object RepresentatIon via Generative Autoregressive ModellIng), a transformer-based architecture that directly processes nested key/value pairs while preserving their hierarchical semantics. Our key technical contributions include: (1) a structure-preserving tokenizer, (2) a novel key/value position encoding scheme, and (3) a grammar-constrained training and inference framework that ensures valid outputs and accelerates training convergence. These enhancements enable efficient end-to-end modeling of semi-structured data. By reformulating classification as next-token prediction, ORIGAMI naturally handles both single-label and multi-label tasks without architectural modifications. Empirical evaluation across diverse domains demonstrates ORIGAMI's effectiveness: On standard tabular benchmarks converted to JSON, ORIGAMI remains competitive with classical and state-of-the-art approaches. On native JSON datasets, we outperform baselines on multi-label classification and specialized models such as convolutional and graph neural networks on a code classification task. Through extensive ablation studies, we validate the impact of each architectural component and establish ORIGAMI as a robust framework for end-to-end learning on semi-structured data.

Rethinking Cancer Gene Identification through Graph Anomaly Analysis 2024-12-23
Show

Graph neural networks (GNNs) have shown promise in integrating protein-protein interaction (PPI) networks for identifying cancer genes in recent studies. However, due to the insufficient modeling of the biological information in PPI networks, more faithfully depiction of complex protein interaction patterns for cancer genes within the graph structure remains largely unexplored. This study takes a pioneering step toward bridging biological anomalies in protein interactions caused by cancer genes to statistical graph anomaly. We find a unique graph anomaly exhibited by cancer genes, namely weight heterogeneity, which manifests as significantly higher variance in edge weights of cancer gene nodes within the graph. Additionally, from the spectral perspective, we demonstrate that the weight heterogeneity could lead to the "flattening out" of spectral energy, with a concentration towards the extremes of the spectrum. Building on these insights, we propose the HIerarchical-Perspective Graph Neural Network (HIPGNN) that not only determines spectral energy distribution variations on the spectral perspective, but also perceives detailed protein interaction context on the spatial perspective. Extensive experiments are conducted on two reprocessed datasets STRINGdb and CPDB, and the experimental results demonstrate the superiority of HIPGNN.

It ha...

It has been accepted by the AAAI 2025 conference

Graph Learning-based Regional Heavy Rainfall Prediction Using Low-Cost Rain Gauges 2024-12-22
Show

Accurate and timely prediction of heavy rainfall events is crucial for effective flood risk management and disaster preparedness. By monitoring, analysing, and evaluating rainfall data at a local level, it is not only possible to take effective actions to prevent any severe climate variation but also to improve the planning of surface and underground hydrological resources. However, developing countries often lack the weather stations to collect data continuously due to the high cost of installation and maintenance. In light of this, the contribution of the present paper is twofold: first, we propose a low-cost IoT system for automatic recording, monitoring, and prediction of rainfall in rural regions. Second, we propose a novel approach to regional heavy rainfall prediction by implementing graph neural networks (GNNs), which are particularly well-suited for capturing the complex spatial dependencies inherent in rainfall patterns. The proposed approach was tested using a historical dataset spanning 72 months, with daily measurements, and experimental results demonstrated the effectiveness of the proposed method in predicting heavy rainfall events, making this approach particularly attractive for regions with limited resources or where traditional weather radar or station coverage is sparse.

Accep...

Accepted for publication in the proceedings of the 2024 Latin American Conference on Computational Intelligence (IEEE LA-CCI 2024)

DCOR: Anomaly Detection in Attributed Networks via Dual Contrastive Learning Reconstruction 2024-12-21
Show

Anomaly detection using a network-based approach is one of the most efficient ways to identify abnormal events such as fraud, security breaches, and system faults in a variety of applied domains. While most of the earlier works address the complex nature of graph-structured data and predefined anomalies, the impact of data attributes and emerging anomalies are often neglected. This paper introduces DCOR, a novel approach on attributed networks that integrates reconstruction-based anomaly detection with Contrastive Learning. Utilizing a Graph Neural Network (GNN) framework, DCOR contrasts the reconstructed adjacency and feature matrices from both the original and augmented graphs to detect subtle anomalies. We employed comprehensive experimental studies on benchmark datasets through standard evaluation measures. The results show that DCOR significantly outperforms state-of-the-art methods. Obtained results demonstrate the efficacy of proposed approach in attributed networks with the potential of uncovering new patterns of anomalies.

12 pa...

12 pages, accepted at the Thirteenth International Conference on Complex Networks and Their Applications

Multi-atlas Ensemble Graph Neural Network Model For Major Depressive Disorder Detection Using Functional MRI Data 2024-12-21
Show

Major depressive disorder (MDD) is one of the most common mental disorders, with significant impacts on many daily activities and quality of life. It stands as one of the most common mental disorders globally and ranks as the second leading cause of disability. The current diagnostic approach for MDD primarily relies on clinical observations and patient-reported symptoms, overlooking the diverse underlying causes and pathophysiological factors contributing to depression. Therefore, scientific researchers and clinicians must gain a deeper understanding of the pathophysiological mechanisms involved in MDD. There is growing evidence in neuroscience that depression is a brain network disorder, and the use of neuroimaging, such as magnetic resonance imaging (MRI), plays a significant role in identifying and treating MDD. Rest-state functional MRI (rs-fMRI) is among the most popular neuroimaging techniques used to study MDD. Deep learning techniques have been widely applied to neuroimaging data to help with early mental health disorder detection. Recent years have seen a rise in interest in graph neural networks (GNNs), which are deep neural architectures specifically designed to handle graph-structured data like rs-fMRI. This research aimed to develop an ensemble-based GNN model capable of detecting discriminative features from rs-fMRI images for the purpose of diagnosing MDD. Specifically, we constructed an ensemble model by combining features from multiple brain region segmentation atlases to capture brain complexity and detect distinct features more accurately than single atlas-based models. Further, the effectiveness of our model is demonstrated by assessing its performance on a large multi-site MDD dataset. The best performing model among all folds achieved an accuracy of 75.80%, a sensitivity of 88.89%, a specificity of 61.84%, a precision of 71.29%, and an F1-score of 79.12%.

17 pa...

17 pages, 2 figures, 10 tables

Generalizability of Graph Neural Network Force Fields for Predicting Solid-State Properties 2024-12-21
Show

Machine-learned force fields (MLFFs) promise to offer a computationally efficient alternative to ab initio simulations for complex molecular systems. However, ensuring their generalizability beyond training data is crucial for their wide application in studying solid materials. This work investigates the ability of a graph neural network (GNN)-based MLFF, trained on Lennard-Jones Argon, to describe solid-state phenomena not explicitly included during training. We assess the MLFF's performance in predicting phonon density of states (PDOS) for a perfect face-centered cubic (FCC) crystal structure at both zero and finite temperatures. Additionally, we evaluate vacancy migration rates and energy barriers in an imperfect crystal using direct molecular dynamics (MD) simulations and the string method. Notably, vacancy configurations were absent from the training data. Our results demonstrate the MLFF's capability to capture essential solid-state properties with good agreement to reference data, even for unseen configurations. We further discuss data engineering strategies to enhance the generalizability of MLFFs. The proposed set of benchmark tests and workflow for evaluating MLFF performance in describing perfect and imperfect crystals pave the way for reliable application of MLFFs in studying complex solid-state materials.

17 pages, 7 figures
Stress Predictions in Polycrystal Plasticity using Graph Neural Networks with Subgraph Training 2024-12-21
Show

Numerical modeling of polycrystal plasticity is computationally intensive. We employ Graph Neural Networks (GNN) to predict stresses on complex geometries for polycrystal plasticity from Finite Element Method (FEM) simulations. We present a novel message-passing GNN that encodes nodal strain and edge distances between FEM mesh cells, and aggregates to obtain embeddings and combines the decoded embeddings with the nodal strains to predict stress tensors on graph nodes. The GNN is trained on subgraphs generated from FEM mesh graphs, in which the mesh cells are converted to nodes and edges are created between adjacent cells. We apply the trained GNN to periodic polycrystals with complex geometries and learn the strain-stress maps based on crystal plasticity theory. The GNN is accurately trained on FEM graphs, in which the $R^2$ for both training and testing sets are larger than 0.99. The proposed GNN approach speeds up more than 150 times compared with FEM on stress predictions. We also apply the trained GNN to unseen simulations for validations and the GNN generalizes well with an overall $R^2$ of 0.992. The GNN accurately predicts the von Mises stress on polycrystals. The proposed model does not overfit and generalizes well beyond the training data, as the error distributions demonstrate. This work outlooks surrogating crystal plasticity simulations using graph data.

25 pa...

25 pages, 11 figures for the main manuscript

Context-aware knowledge graph framework for traffic speed forecasting using graph neural network 2024-12-21
Show

Human mobility is intricately influenced by urban contexts spatially and temporally, constituting essential domain knowledge in understanding traffic systems. While existing traffic forecasting models primarily rely on raw traffic data and advanced deep learning techniques, incorporating contextual information remains underexplored due to insufficient integration frameworks and the complexity of urban contexts. This study proposes a novel context-aware knowledge graph (CKG) framework to enhance traffic speed forecasting by effectively modeling spatial and temporal contexts. Employing a relation-dependent integration strategy, the framework generates context-aware representations from the spatial and temporal units of CKG to capture spatio-temporal dependencies of urban contexts. A CKG-GNN model, combining the CKG, dual-view multi-head self-attention (MHSA), and graph neural network (GNN), is then designed to predict traffic speed utilizing these context-aware representations. Our experiments demonstrate that CKG's configuration significantly influences embedding performance, with ComplEx and KG2E emerging as optimal for embedding spatial and temporal units, respectively. The CKG-GNN model establishes a benchmark for 10-120 min predictions, achieving average MAE, MAPE, and RMSE of $3.46\pm0.01$, $14.76\pm0.09%$, and $5.08\pm0.01$, respectively. Compared to the baseline DCRNN model, integrating the spatial unit improves the MAE by 0.04 and the temporal unit by 0.13, while integrating both units further reduces it by 0.18. The dual-view MHSA analysis reveals the crucial role of relation-dependent features from the context-based view and the model's ability to prioritize recent time slots in prediction from the sequence-based view. Overall, this study underscores the importance of merging context-aware knowledge graphs with graph neural networks to improve traffic forecasting.

Physics-Guided Fair Graph Sampling for Water Temperature Prediction in River Networks 2024-12-21
Show

This work introduces a novel graph neural networks (GNNs)-based method to predict stream water temperature and reduce model bias across locations of different income and education levels. Traditional physics-based models often have limited accuracy because they are necessarily approximations of reality. Recently, there has been an increasing interest of using GNNs in modeling complex water dynamics in stream networks. Despite their promise in improving the accuracy, GNNs can bring additional model bias through the aggregation process, where node features are updated by aggregating neighboring nodes. The bias can be especially pronounced when nodes with similar sensitive attributes are frequently connected. We introduce a new method that leverages physical knowledge to represent the node influence in GNNs, and then utilizes physics-based influence to refine the selection and weights over the neighbors. The objective is to facilitate equitable treatment over different sensitive groups in the graph aggregation, which helps reduce spatial bias over locations, especially for those in underprivileged groups. The results on the Delaware River Basin demonstrate the effectiveness of the proposed method in preserving equitable performance across locations in different sensitive groups.

MOL-Mamba: Enhancing Molecular Representation with Structural & Electronic Insights 2024-12-21
Show

Molecular representation learning plays a crucial role in various downstream tasks, such as molecular property prediction and drug design. To accurately represent molecules, Graph Neural Networks (GNNs) and Graph Transformers (GTs) have shown potential in the realm of self-supervised pretraining. However, existing approaches often overlook the relationship between molecular structure and electronic information, as well as the internal semantic reasoning within molecules. This omission of fundamental chemical knowledge in graph semantics leads to incomplete molecular representations, missing the integration of structural and electronic data. To address these issues, we introduce MOL-Mamba, a framework that enhances molecular representation by combining structural and electronic insights. MOL-Mamba consists of an Atom & Fragment Mamba-Graph (MG) for hierarchical structural reasoning and a Mamba-Transformer (MT) fuser for integrating molecular structure and electronic correlation learning. Additionally, we propose a Structural Distribution Collaborative Training and E-semantic Fusion Training framework to further enhance molecular representation learning. Extensive experiments demonstrate that MOL-Mamba outperforms state-of-the-art baselines across eleven chemical-biological molecular datasets. Code is available at https://github.com/xian-sh/MOL-Mamba.

Accepted by AAAI2025
Effective Context Modeling Framework for Emotion Recognition in Conversations 2024-12-21
Show

Emotion Recognition in Conversations (ERC) facilitates a deeper understanding of the emotions conveyed by speakers in each utterance within a conversation. Recently, Graph Neural Networks (GNNs) have demonstrated their strengths in capturing data relationships, particularly in contextual information modeling and multimodal fusion. However, existing methods often struggle to fully capture the complex interactions between multiple modalities and conversational context, limiting their expressiveness. To overcome these limitations, we propose ConxGNN, a novel GNN-based framework designed to capture contextual information in conversations. ConxGNN features two key parallel modules: a multi-scale heterogeneous graph that captures the diverse effects of utterances on emotional changes, and a hypergraph that models the multivariate relationships among modalities and utterances. The outputs from these modules are integrated into a fusion layer, where a cross-modal attention mechanism is applied to produce a contextually enriched representation. Additionally, ConxGNN tackles the challenge of recognizing minority or semantically similar emotion classes by incorporating a re-weighting scheme into the loss functions. Experimental results on the IEMOCAP and MELD benchmark datasets demonstrate the effectiveness of our method, achieving state-of-the-art performance compared to previous baselines.

Learning Cross-Task Generalities Across Graphs via Task-trees 2024-12-21
Show

Foundation models aim to create general, cross-task, and cross-domain machine learning models by pretraining on large-scale datasets to capture shared patterns or concepts (generalities), such as contours, colors, textures, and edges in images, or tokens, words, and sentences in text. However, discovering generalities across graphs remains challenging, which has hindered the development of graph foundation models. To tackle this challenge, in this paper, we propose a novel approach to learn generalities across graphs via task-trees. Specifically, we first define the basic learning instances in graphs as task-trees and assume that the generalities shared across graphs are, at least partially, preserved in the task-trees of the given graphs. To validate the assumption, we first perform a theoretical analysis of task-trees in terms of stability, transferability, and generalization. We find that if a graph neural network (GNN) model is pretrained on diverse task-trees through a reconstruction task, it can learn sufficient transferable knowledge for downstream tasks using an appropriate set of fine-tuning samples. To empirically validate the assumption, we further instantiate the theorems by developing a cross-task, cross-domain graph foundation model named Graph generality Identifier on task-Trees (GIT). The extensive experiments over 30 graphs from five domains demonstrate the effectiveness of GIT in fine-tuning, in-context learning, and zero-shot learning scenarios. Particularly, the general GIT model pretrained on large-scale datasets can be quickly adapted to specific domains, matching or even surpassing expert models designed for those domains. Our data and code are available at https://github.com/Zehong-Wang/GIT.

THeGCN: Temporal Heterophilic Graph Convolutional Network 2024-12-21
Show

Graph Neural Networks (GNNs) have exhibited remarkable efficacy in diverse graph learning tasks, particularly on static homophilic graphs. Recent attention has pivoted towards more intricate structures, encompassing (1) static heterophilic graphs encountering the edge heterophily issue in the spatial domain and (2) event-based continuous graphs in the temporal domain. State-of-the-art (SOTA) has been concurrently addressing these two lines of work but tends to overlook the presence of heterophily in the temporal domain, constituting the temporal heterophily issue. Furthermore, we highlight that the edge heterophily issue and the temporal heterophily issue often co-exist in event-based continuous graphs, giving rise to the temporal edge heterophily challenge. To tackle this challenge, this paper first introduces the temporal edge heterophily measurement. Subsequently, we propose the Temporal Heterophilic Graph Convolutional Network (THeGCN), an innovative model that incorporates the low/high-pass graph signal filtering technique to accurately capture both edge (spatial) heterophily and temporal heterophily. Specifically, the THeGCN model consists of two key components: a sampler and an aggregator. The sampler selects events relevant to a node at a given moment. Then, the aggregator executes message-passing, encoding temporal information, node attributes, and edge attributes into node embeddings. Extensive experiments conducted on 5 real-world datasets validate the efficacy of THeGCN.

Graph Neural Network Training Systems: A Performance Comparison of Full-Graph and Mini-Batch 2024-12-20
Show

Graph Neural Networks (GNNs) have gained significant attention in recent years due to their ability to learn representations of graph-structured data. Two common methods for training GNNs are mini-batch training and full-graph training. Since these two methods require different training pipelines and systems optimizations, two separate classes of GNN training systems emerged, each tailored for one method. Works that introduce systems belonging to a particular category predominantly compare them with other systems within the same category, offering limited or no comparison with systems from the other category. Some prior work also justifies its focus on one specific training method by arguing that it achieves higher accuracy than the alternative. The literature, however, has incomplete and contradictory evidence in this regard. In this paper, we provide a comprehensive empirical comparison of representative full-graph and mini-batch GNN training systems. We find that the mini-batch training systems consistently converge faster than the full-graph training ones across multiple datasets, GNN models, and system configurations. We also find that mini-batch training techniques converge to similar to or often higher accuracy values than full-graph training ones, showing that mini-batch sampling is not necessarily detrimental to accuracy. Our work highlights the importance of comparing systems across different classes, using time-to-accuracy rather than epoch time for performance comparison, and selecting appropriate hyperparameters for each training method separately.

12 pa...

12 pages, 9 Figures, 8 Tables, 1 appendix, Graph Neural Network, Graph Neural Networks, Full-graph training, Mini-batch training, full-batch training, distributed training, performance, epoch time, time to accuracy, accuracy

About

Daily ArXiv Papers.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages