Skip to content
/ minitorch Public template
forked from minitorch/minitorch

The full minitorch student suite.

Notifications You must be signed in to change notification settings

perrindelort/minitorch

 
 

Repository files navigation

MiniTorch

My completion of MiniTorch, a DIY teaching library made by Sasha Rush for machine Learning who wish to learn about the internal concepts underlying deep learning systems. It is a pure Python re-implementation of the PyTorch and was designed to be simple, easy-to-read, tested, and incremental. The final library can run Torch code.

Documentation

Documentation can be accessed here

Progression

  • Module 0 : Fundamentals
    • Task 0.1 : Operators
    • Task 0.2 : Testing and Debugging
    • Task 0.3 : Functional Python
    • Task 0.4 : Modules
    • Task 0.5 : Visualization
  • Module 1 : Autodiff
    • Task 1.1 : Numerical Derivatives
    • Task 1.2 : Scalars
    • Task 1.3 : Chain Rule
    • Task 1.4 : Backpropagation
    • Task 1.5 : Training
  • Module 2 : Tensors
    • Task 2.1 : Tensor Data-Indexing
    • Task 2.2 : Tensor Broadcasting
    • Task 2.3 : Tensor Operations
    • Task 2.4 : Gradients and Autograd
    • Task 2.5 : Training
  • Module 3 : Efficiency
    • Task 3.1 : Parallelization
    • Task 3.2 : Matrix Multiplication
    • Task 3.3 : CUDA Operations
    • Task 3.4 : CUDA Matrix Multiplication
    • Task 3.5 : Training
  • Module 4 : Networks
    • Task 4.1 : 1D Convolution
    • Task 4.2 : 2D Convolution
    • Task 4.3 : Pooling
    • Task 4.4 : Softmax and Dropout
    • Task 4.5 : Training an Image Classifier

Results

Module 0

Result of the same network built with Pytorch on 3 different datasets : simple, circle and spiral

Image 1 Image 2 Image 3

Module 1

Result of the same network built with MiniTorch's scalars on 3 different datasets : split, circle and xor

Image 1 Image 2 Image 3

About

The full minitorch student suite.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%