Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Create whisper_evaluator.py #3990

Open
wants to merge 10 commits into
base: master
Choose a base branch
from
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
"""
Copyright (c) 2024 Intel Corporation

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
import re

import openvino_genai as ov_genai
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
from transformers.pipelines.automatic_speech_recognition import \
AutomaticSpeechRecognitionPipeline
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

please make these packages optionl like inflect bellow

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Agree. I had them all in try except in initial version but then I thought that packages are so common that was no sense to import, but indeed there are checks that fails to import them though.


from ...representation import CharacterRecognitionPrediction
from ...utils import UnsupportedPackage, extract_image_representations
from .base_custom_evaluator import BaseCustomEvaluator

try:
import inflect
except ImportError as import_err:
inflect = UnsupportedPackage("inflect", import_err.msg)


class WhisperEvaluator(BaseCustomEvaluator):
VALID_PIPELINE_CLASSES = [
"GenAI_WhisperPipeline",
"TransformersAsrPipeline",
"OptimumIntelPipeline"
]

def __init__(self, dataset_config, pipe, orig_config):
super().__init__(dataset_config, None, orig_config)
self.pipe = pipe
if hasattr(self.pipe, "adapter"):
self.adapter_type = self.pipe.adapter.__provider__

@classmethod
def from_configs(cls, config, delayed_model_loading=False, orig_config=None):
dataset_config = config["datasets"]
pipeline_class_name = config["pipeline_class"]

if pipeline_class_name not in cls.VALID_PIPELINE_CLASSES:
raise ValueError(f"Invalid pipeline class name: {pipeline_class_name}. "
f"Must be one of {cls.VALID_PIPELINE_CLASSES}")

pipeline_class = globals()[pipeline_class_name]
pipe = pipeline_class(config)
return cls(dataset_config, pipe, orig_config)

def _process(self, output_callback, calculate_metrics, progress_reporter, metric_config, csv_file):
for batch_id, (batch_input_ids, batch_annotation, batch_inputs, batch_identifiers) in enumerate(self.dataset):
batch_inputs = self.preprocessor.process(batch_inputs, batch_annotation)
batch_inputs_extr, batch_meta = extract_image_representations(batch_inputs)

batch_raw_prediction, batch_prediction = self.pipe.predict(
batch_identifiers, batch_inputs_extr, batch_meta
)
metrics_result = self._get_metrics_result(batch_input_ids, batch_annotation, batch_prediction,
calculate_metrics)
if output_callback:
output_callback(batch_raw_prediction[0], metrics_result=metrics_result,
element_identifiers=batch_identifiers, dataset_indices=batch_input_ids)
self._update_progress(progress_reporter, metric_config, batch_id, len(batch_prediction), csv_file)

def release(self):
pass


def normalize_transcription(engine, text):
# Convert numbers to words
tokens = (engine.number_to_words(token) if token.isdigit() else token for token in text.split())
# Remove punctuation except for apostrophes that are in the middle of words
text = re.sub(r"\b'\b|[^\w\s]", "", " ".join(tokens))
# Remove leading, trailing, and multiple consecutive spaces, and convert to uppercase
return " ".join(text.upper().split())


class WhisperPipeline:
def __init__(self, config):
self.engine = inflect.engine()
self.pipeline = self._initialize_pipeline(config)

def _initialize_pipeline(self, config):
raise NotImplementedError

def _get_predictions(self, data, identifiers, input_meta):
raise NotImplementedError

def predict(self, identifiers, input_data, input_meta, encoder_callback=None):
predictions = []
outputs = []
for data in input_data:
transcription = self._get_predictions(data, identifiers, input_meta)
prediction_text = normalize_transcription(self.engine, transcription)
predictions.append(prediction_text)
outputs.append(CharacterRecognitionPrediction(identifiers[0], predictions[0]))
return [], outputs


class GenAI_WhisperPipeline(WhisperPipeline):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I would rename classes for consistency, e.g. HFWhisperPipeline, OptimumWhisperPipeline, GenAIWhisperPipeline,

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Agree - suggested names are self descriptive

def _initialize_pipeline(self, config):
model_dir = config.get("_models", [None])[0]
device = config.get("_device", "CPU")
pipeline = ov_genai.WhisperPipeline(str(model_dir), device=device)
return pipeline

def _get_predictions(self, data, identifiers, input_meta):
return self.pipeline.generate(data[0]).texts[0]


class TransformersAsrPipeline(WhisperPipeline):
def _initialize_pipeline(self, config):
try:
import torch # pylint: disable=C0415
except ImportError as import_err:
UnsupportedPackage("torch", import_err.msg).raise_error(self.__class__.__name__)

model_id = config.get("model_id")
device = "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
).to(device)

processor = AutoProcessor.from_pretrained(model_id)

pipeline = AutomaticSpeechRecognitionPipeline(
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
)
return pipeline

def _get_predictions(self, data, identifiers, input_meta):
sampling_rate = input_meta[0].get("sample_rate")
sample = {"path": identifiers[0], "array": data[0], "sampling_rate": sampling_rate}
return self.pipeline(sample)["text"]


class OptimumIntelPipeline(WhisperPipeline):
def _initialize_pipeline(self, config):
try:
from optimum.intel.openvino import \
OVModelForSpeechSeq2Seq # pylint: disable=C0415
except ImportError as import_err:
UnsupportedPackage("optimum.intel.openvino", import_err.msg).raise_error(self.__class__.__name__)

device = config.get("_device", "CPU")
model_dir = config.get("_models", [None])[0]
ov_model = OVModelForSpeechSeq2Seq.from_pretrained(str(model_dir))
ov_processor = AutoProcessor.from_pretrained(str(model_dir))

pipeline = AutomaticSpeechRecognitionPipeline(
model=ov_model,
tokenizer=ov_processor.tokenizer,
feature_extractor=ov_processor.feature_extractor,
device=device,
)
return pipeline

def _get_predictions(self, data, identifiers, input_meta):
sampling_rate = input_meta[0].get("sample_rate")
sample = {"path": identifiers[0], "array": data[0], "sampling_rate": sampling_rate}
return self.pipeline(sample)["text"]