Skip to content

milhidaka/chainer-image-caption

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Image caption generator using Chainer

Python 3 and ResNet feature version by @milhidaka

Including caption generation demo on web browser using WebDNN.

Screenshot

Requirement

Usage (only caption generation)

Simply doing caption generation using pre-trained model (ResNet-50 + MSCOCO)

Please download dataset and train by yourself by looking at usage (training model using MSCOCO dataset) below.

$ python src/generate_caption.py -s dataset_coco.pkl -m caption_gen_resnet.model -l image/list.txt -g 0

Options:

  • -s, sentence: (required) sentence dataset file path.
  • -m, --model: (required) trained model file path.
  • -l, --list: (required) image path list file.
  • -g, --gpu: (optional) GPU index. -1 means CPU.

Convert model to WebDNN (browser demo)

$ python src/convert_webdnn.py --sentence dataset_coco.pkl --model caption_gen_resnet.model --example_image image/asakusa.jpg

Then start a HTTP server (python -m http.server) and go to http://localhost:8000/webdnn.

Usage (training model using MSCOCO dataset)

Download dataset

  1. Download images (2014) from http://mscoco.org/dataset/#download and extract to some directory.
  2. Download caption_datasets.zip from: http://cs.stanford.edu/people/karpathy/deepimagesent/
  3. Extract downloaded zip file, and you'll get dataset_coco.json.

Convert dataset

$ python src/convert_dataset.py dataset_coco.json dataset_coco.pkl

Parameters:

  • sentence JSON file of dataset.
  • output pkl file.

Extract ResNet feature

$ python src/extract_resnet_feat.py dataset_coco.json /path/to/coco/images resnet_feat.mat -g 0 -b 16

Options:

  • sentence JSON file of dataset.
  • Top-level directory containing images. Searches files recursively.
  • output feature matrix file. (becomes about 1GB)
  • -g, --gpu: (optional) GPU index. -1 means CPU.
  • -b, --batchsize: (optional) batch size for extracting feature.

It will take several hours.

Train dataset

$ python src/train.py -g 0 -s dataset_coco.pkl -i resnet_feats.mat -o model/caption_gen

Options:

  • -g, --gpu: (optional) GPU device index (default: -1).
  • -s, --sentence: (required) sentence dataset file path.
  • -i, --image: (required) image feature file path.
  • -m, --model: (optional) input model file path without extension.
  • -o, --output: (required) output model file path without extension.
  • --iter: (optional) the number of iterations (default: 100).

Image path list file sample

image/asakusa.jpg
image/tree.jpg

License

MIT License

About

Image caption generator using Chainer, Python 3 and ResNet feature version

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 69.9%
  • JavaScript 26.6%
  • HTML 3.5%