It contains a cleaned-up reimplementation of the following paper:
"Privacy-Preserving Image Features via Adversarial Affine Subspace Embeddings".
M. Dusmanu, J.L. Schönberger, S.N. Sinha, and M. Pollefeys. CVPR 2021.
OpenMP and Eigen must be installed prior to the setup of this repository. CUDA is also a recommended dependency for best performance.
- Start by creating and activating the base python environment:
conda env create --file=env.yml; conda activate ppif
- Install the
pyppif
bindings:
cd py_ppif; pip install .; cd ..
- [Optional] Install the
pyppifcuda
bindings:
cd py_ppif_cuda; pip install .; cd ..
Start by installing COLMAP (used for SIFT feature extraction) and set the env variable COLMAP_PATH
to the COLMAP executable, e.g.:
export COLMAP_PATH=~/sources/colmap/build/src/exe/colmap
- Download the dataset:
bash download_hpatches_sequences.sh
- Extract SIFT / DoG + HardNet features:
python feature-utils/extract_sift.py --dataset_path data/hpatches-sequences-release/ --colmap_path $COLMAP_PATH
python feature-utils/extract_hardnet.py --dataset_path data/hpatches-sequences-release/
- Run the evaluation:
python evaluate_hpatches_sequences.py --dataset_path data/hpatches-sequences-release/ --descriptor sift
python evaluate_hpatches_sequences.py --dataset_path data/hpatches-sequences-release/ --descriptor hardnet
Coming soon...
If you use this code in your project, please cite the following paper:
@InProceedings{Dusmanu2021Privacy,
author = "Dusmanu, Mihai and Sch\"onberger, Johannes L. and Sinha, Sudipta N. and Pollefeys, Marc",
title = "{P}rivacy-{P}reserving {I}mage {F}eatures via {A}dversarial {A}ffine {S}ubspace {E}mbeddings",
booktitle = "Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition",
year = "2021"
}