Skip to content

Official PyTorch Implementation for Paper <ComboLoss for Facial Attractiveness Analysis with Squeeze-and-Excitation Networks> (State-of-the-art Performance on 3 Popular Benchmark Dataset)

License

Notifications You must be signed in to change notification settings

lucasxlu/ComboLoss

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ComboLoss for Facial Attractiveness Analysis with Squeeze-and-Excitation Networks

Introduction

This repository holds the official PyTorch implementation of paper ComboLoss for Facial Attractiveness Analysis with Squeeze-and-Excitation Networks. With SEResNeXt50 as backbone, ComboLoss achieves state-of-the-art performance on SCUT-FBP, HotOrNot and SCUT-FBP5500 dataset, which outperforms many methods published at IJCAI, IEEE Transactions on Affective Computing, ICIP, ICASSP, ICPR, PCM and etc.

ComboLoss

If you find the code helps your research, please cite this project as:

@article{xu2020comboloss,
  title={ComboLoss for Facial Attractiveness Analysis with Squeeze-and-Excitation Networks},
  author={Xu, Lu and Xiang, Jinhai},
  journal={arXiv preprint arXiv:2010.10721},
  year={2020}
}

Pretrained Models on SCUT-FBP5500 with 60%/40% data splitting setting: ComboLoss_SCUT-FBP5500. We also provide inference.py code.

Data Description

Dataset Median Mean
SCUT-FBP 2.549 2.694
HotOrNot 0.0369 0.0039
SCUT-FBP5500 3 2.99

Performance Evaluation

Evaluation & Ablation Analysis on SCUT-FBP5500 (6/4 splitting strategy)

Backbone Loss MAE RMSE PC
SEResNeXt50 L1 0.2212 0.2941 0.9012
SEResNeXt50 MSE 0.2189 0.2907 0.9041
SEResNeXt50 SmoothL1 0.2204 0.2901 0.9050
ComboNet (SEResNeXt50) CombinedLoss (alpha=1, beta=1, gamma=1) 0.2135 0.2818 0.9099
ComboNet (SEResNeXt50) CombinedLoss (alpha=2, beta=1, gamma=1) 0.2191 0.2891 0.9066
ComboNet (SEResNeXt50) CombinedLoss (alpha=2, beta=1, gamma=1) 0.2126 0.2813 0.9117
ComboNet (SEResNeXt50) CombinedLoss (alpha=3, beta=1, gamma=1) 0.2190 0.2894 0.9053
ComboNet (SEResNeXt50) CombinedLoss (alpha=1, beta=2, gamma=1) 0.2150 0.2868 0.9063
ComboNet (SEResNeXt50) CombinedLoss (alpha=1, beta=2, gamma=1) 0.2176 0.2895 0.9044
ComboNet (SEResNeXt50) CombinedLoss (alpha=1, beta=3, gamma=1) 0.2171 0.2862 0.9071
ComboNet (ResNet18) CombinedLoss (alpha=1, beta=1, gamma=1) 0.2215 0.2936 0.9021
ComboNet (ResNet18) CombinedLoss (alpha=1, beta=2, gamma=1) 0.2202 0.2907 0.9041
ComboNet (ResNet18) CombinedLoss (alpha=1, beta=3, gamma=1) 0.2252 0.2991 0.8980
ComboNet (ResNet18) CombinedLoss (alpha=2, beta=1, gamma=1) 0.2557 0.3362 0.8780
ComboNet (ResNet18) CombinedLoss (alpha=3, beta=1, gamma=1) 0.2513 0.3364 0.8788

Samples

Evaluation on SCUT-FBP

Backbone CV MAE RMSE PC
ComboNet (SEResNeXt50) 1 0.2689 0.3340 0.9144
ComboNet (SEResNeXt50) 2 0.2456 0.3050 0.9063
ComboNet (SEResNeXt50) 3 0.2436 0.3095 0.9082
ComboNet (SEResNeXt50) 4 0.2282 0.2992 0.9238
ComboNet (SEResNeXt50) 5 0.2171 0.2889 0.9051
ComboNet (SEResNeXt50) AVG 0.2441 0.3122 0.9090

Evaluation on HotOrNot

Backbone CV MAE RMSE PC
ComboNet (SEResNeXt50) 1 0.8207 1.0379 0.5168
ComboNet (SEResNeXt50) 2 0.8273 1.0552 0.5004
ComboNet (SEResNeXt50) 3 0.8223 1.0399 0.5148
ComboNet (SEResNeXt50) 4 0.8108 1.0241 0.5080
ComboNet (SEResNeXt50) 5 0.8256 1.0487 0.4747
ComboNet (SEResNeXt50) AVG 0.8213 1.0412 0.5029

Evaluation on SCUT-FBP5500 (5-Fold Cross Validation)

Backbone CV MAE RMSE PC
ComboNet (SEResNeXt50) 1 0.2119 0.2751 0.9157
ComboNet (SEResNeXt50) 2 0.2084 0.2751 0.9164
ComboNet (SEResNeXt50) 3 0.1998 0.2711 0.9215
ComboNet (SEResNeXt50) 4 0.2050 0.2693 0.9208
ComboNet (SEResNeXt50) 5 0.1999 0.2615 0.9250
ComboNet (SEResNeXt50) AVG 0.2050 0.2704 0.9199

Comparison with prior arts on SCUT-FBP5500

Models Published At MAE RMSE PC
ResNeXt-50 CVPR'16 0.2291 0.3017 0.8997
ResNet-18 CVPR'16 0.2419 0.3166 0.8900
AlexNet NIPS'12 0.2651 0.3481 0.8634
HMTNet ICIP'19 0.2380 0.3141 0.8912
AaNet IJCAI'19 0.2236 0.2954 0.9055
R^2 ResNeXt ICPR'18 0.2416 0.3046 0.8957
R^3CNN IEEE Trans on Affective Computing 0.2120 0.2800 0.9142
ComboLoss (Ours) - 0.2050 0.2704 0.9199

Ablation Study (6/4 splitting strategy)

Model w/wo balanced Xent Loss MAE RMSE PC
SEResNeXt50 + ComboLoss w 0.2126 0.2813 0.9117
SEResNeXt50 + ComboLoss wo 0.2115 0.2814 0.9099

Reference

  1. Xu L, Xiang J, Yuan X. CRNet: Classification and Regression Neural Network for Facial Beauty Prediction[C]//Pacific Rim Conference on Multimedia. Springer, Cham, 2018: 661-671.
  2. Lin L, Liang L, Jin L, et al. Attribute-aware convolutional neural networks for facial beauty prediction[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. AAAI Press, 2019: 847-853.
  3. Xu L, Fan H, Xiang J. Hierarchical Multi-Task Network For Race, Gender and Facial Attractiveness Recognition[C]//2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019: 3861-3865.
  4. Liu X, Li T, Peng H, et al. Understanding beauty via deep facial features[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2019: 0-0.
  5. Liang L, Lin L, Jin L, et al. SCUT-FBP5500: A diverse benchmark dataset for multi-paradigm facial beauty prediction[C]//2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018: 1598-1603.
  6. Lin L, Liang L, Jin L. Regression Guided by Relative Ranking Using Convolutional Neural Network (R3CNN) for Facial Beauty Prediction[J]. IEEE Transactions on Affective Computing, 2019.
  7. Lin L, Liang L, Jin L. R 2-ResNeXt: A ResNeXt-Based Regression Model with Relative Ranking for Facial Beauty Prediction[C]//2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018: 85-90.

About

Official PyTorch Implementation for Paper <ComboLoss for Facial Attractiveness Analysis with Squeeze-and-Excitation Networks> (State-of-the-art Performance on 3 Popular Benchmark Dataset)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages