Skip to content

lionalion/bert

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Running Google BERT with Multilingual (104 languages) pretrained neural net locally or via Google Colab.


Google BERT official page: https://github.com/google-research/bert

Keras BERT: https://github.com/CyberZHG/keras-bert


I. Run BERT via Google Colab (the simplest way):

  1. Open URL: http://colab.research.google.com/github/blade1780/bert/blob/master/BERT.ipynb
  2. Menu Runtime -> Run All (or press Ctrl+F9)
  3. Agree to reset all runtimes if needed
  4. Wait for downloading model and all imports
  5. Change input strings (sentence, sentence_1 and sentence_2) and press Play button left side to recalculate only current cell (or press Ctrl+Enter)

If use mobile Chrome, it may be need to activate checkbox Full Version in browser settings.

II. Run BERT locally (you need GPU GTX 970 4Gb or higher):

  1. Install TensorFlow from https://www.tensorflow.org/install (install CUDA Toolkit 9.0, cuDNN SDK 7.2 and run)

pip install tensorflow-gpu

  1. Intall Keras

pip install keras

  1. Install Keras BERT

pip install keras-bert

  1. Clone this repository

git clone https://github.com/blade1780/bert

  1. Download and extract pretrained BERT model to folder 'bert': https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip (632 Mb)

  2. Navigate to 'bert' folder

cd bert

  1. Run

python BERT.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 56.4%
  • Jupyter Notebook 43.6%