-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
63 changed files
with
6,535 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
__pycache__/ | ||
|
||
# latent | ||
cache/ | ||
# data | ||
data/ | ||
# pre-trained weights | ||
weights/ | ||
# results | ||
results/ |
Empty file.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
from PIL import Image | ||
import torch | ||
|
||
from aof.utils.image import read_image | ||
|
||
|
||
class PathDataset(torch.utils.data.Dataset): | ||
def __init__(self, paths: list, transform=None) -> None: | ||
super().__init__() | ||
self.paths = paths | ||
self.transform = transform | ||
|
||
def __getitem__(self, index: int) -> torch.Tensor: | ||
path = self.paths[index] | ||
|
||
# alpha channel is converted to white | ||
img: Image.Image = read_image(path) | ||
|
||
if self.transform is not None: | ||
img = self.transform(img) | ||
return img | ||
|
||
def __len__(self) -> int: | ||
return len(self.paths) |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,244 @@ | ||
from typing import Callable | ||
|
||
from compressai.entropy_models import EntropyModel | ||
import numpy as np | ||
import torch | ||
|
||
|
||
class WeightEntropyModule(EntropyModel): | ||
"""entropy module for network parameters | ||
width * [- (self.n_bins // 2 - 1), ..., -1, 0, 1, 2, ..., self.n_bins // 2 - 1] | ||
e.g.) n_bins = 56, pmf_lengths = 55 | ||
cdf: 1 / (1 + alpha) * slab + alpha / (1 + alpha) * spike | ||
spike: N (0, width / 6) | ||
slab: N(0, sigma) | ||
quantization interval: width | ||
""" | ||
|
||
def __init__( | ||
self, cdf: Callable, width: float = 5e-3, data_type: str = "float32", **kwargs | ||
): | ||
super().__init__(**kwargs) | ||
self.cdf = cdf | ||
self.width: float = width | ||
self._tail_mass = 1e-9 | ||
# used for compression | ||
self.data_type = data_type | ||
|
||
self.register_buffer("_n_bins", torch.IntTensor()) | ||
self.update(force=True) | ||
|
||
def update(self, force: bool = False) -> bool: | ||
if self._n_bins.numel() > 0 and not force: | ||
return False | ||
|
||
delta = self.width / 2 | ||
# accept self.width * 10000 * interval difference at maximum | ||
intervals: torch.Tensor = torch.arange(1, 10001) | ||
upper = self._likelihood_cumulative( | ||
intervals * self.width + delta, stop_gradient=True | ||
) | ||
lower = self._likelihood_cumulative( | ||
-intervals * self.width - delta, stop_gradient=True | ||
) | ||
# (upper - lower) - (1 - self._tail_mass) | ||
diff: torch.Tensor = self._tail_mass - lower - (1 - upper) | ||
if not (diff >= 0).any(): | ||
self._n_bins = intervals[-1] | ||
else: | ||
n_bins = intervals[diff.argmax()] | ||
# even value | ||
self._n_bins = ((n_bins - 1) // 2 + 1) * 2 | ||
self._n_bins = self._n_bins.reshape((1,)) | ||
|
||
bound = (self._n_bins - 1) // 2 | ||
bound = torch.clamp(bound.int(), min=0) | ||
|
||
self._offset = -bound | ||
|
||
pmf_start = -bound | ||
pmf_length = 2 * bound + 1 | ||
|
||
max_length = pmf_length.max().item() | ||
device = pmf_start.device | ||
samples = torch.arange(max_length, device=device) | ||
|
||
samples = samples[None, :] + pmf_start[:, None, None] | ||
|
||
half = self.width / 2 | ||
|
||
lower = self._likelihood_cumulative( | ||
samples * self.width - half, stop_gradient=True | ||
) | ||
upper = self._likelihood_cumulative( | ||
samples * self.width + half, stop_gradient=True | ||
) | ||
pmf = upper - lower | ||
|
||
pmf = pmf[:, 0, :] | ||
tail_mass = lower[:, 0, :1] + (1 - upper[:, 0, -1:]) | ||
|
||
quantized_cdf = self._pmf_to_cdf(pmf, tail_mass, pmf_length, max_length) | ||
self._quantized_cdf = quantized_cdf | ||
self._cdf_length = pmf_length + 2 | ||
return True | ||
|
||
def quantize(self, w: torch.Tensor, mode: str, means=None) -> torch.Tensor: | ||
if mode == "noise": | ||
assert self.training | ||
# add uniform noise: [-self.width / 2, self.width / 2] | ||
noise = (torch.rand_like(w) - 0.5) * self.width | ||
return w + noise | ||
|
||
symbols: torch.Tensor = torch.round(w / self.width) | ||
if mode == "symbols": | ||
bound: torch.Tensor = (self._n_bins - 1) // 2 | ||
symbols = torch.min(torch.max(symbols, -bound), bound) | ||
return symbols.int() | ||
elif mode == "dequantize": | ||
w_bound: torch.Tensor = (self._n_bins - 1) * self.width / 2 | ||
# clamp with (-w_bound, w_bound) | ||
w_hat: torch.Tensor = torch.min( | ||
torch.max(symbols * self.width, -w_bound), w_bound | ||
) | ||
return (w_hat - w).detach() + w | ||
else: | ||
raise NotImplementedError | ||
|
||
def dequantize( | ||
self, inputs: torch.Tensor, means=None, dtype: torch.dtype = torch.float | ||
) -> torch.Tensor: | ||
outputs = (inputs * self.width).type(dtype) | ||
return outputs | ||
|
||
# modified from _logits_cumulative | ||
def _likelihood_cumulative( | ||
self, inputs: torch.Tensor, stop_gradient: bool | ||
) -> torch.Tensor: | ||
if stop_gradient: | ||
with torch.no_grad(): | ||
return self.cdf(inputs) | ||
else: | ||
return self.cdf(inputs) | ||
|
||
def _likelihood(self, inputs: torch.Tensor) -> torch.Tensor: | ||
delta = self.width / 2 | ||
v0 = inputs - delta | ||
v1 = inputs + delta | ||
lower = self._likelihood_cumulative(v0, stop_gradient=False) | ||
upper = self._likelihood_cumulative(v1, stop_gradient=False) | ||
likelihood = upper - lower | ||
return likelihood | ||
|
||
def forward(self, x: torch.Tensor, training=None) -> tuple: | ||
if self.width == 0: | ||
outputs = x | ||
likelihood = torch.ones_like(x) * (2 ** -32) | ||
return outputs, likelihood | ||
|
||
if training is None: | ||
training = self.training | ||
|
||
if not torch.jit.is_scripting(): | ||
# x from B x C x ... to C x B x ... | ||
perm = np.arange(len(x.shape)) | ||
perm[0], perm[1] = perm[1], perm[0] | ||
# Compute inverse permutation | ||
inv_perm = np.arange(len(x.shape))[np.argsort(perm)] | ||
else: | ||
# TorchScript in 2D for static inference | ||
# Convert to (channels, ... , batch) format | ||
perm = (1, 2, 3, 0) | ||
inv_perm = (3, 0, 1, 2) | ||
|
||
x = x.permute(*perm).contiguous() | ||
shape = x.size() | ||
values = x.reshape(x.size(0), 1, -1) | ||
|
||
# Add noise or quantize | ||
outputs = self.quantize(values, "dequantize") | ||
outputs_ent = self.quantize(values, "noise") if self.training else outputs | ||
|
||
likelihood = self._likelihood(outputs_ent) | ||
if self.use_likelihood_bound: | ||
likelihood = self.likelihood_lower_bound(likelihood) | ||
|
||
# Convert back to input tensor shape | ||
outputs = outputs.reshape(shape) | ||
outputs = outputs.permute(*inv_perm).contiguous() | ||
|
||
likelihood = likelihood.reshape(shape) | ||
likelihood = likelihood.permute(*inv_perm).contiguous() | ||
|
||
return outputs, likelihood | ||
|
||
@staticmethod | ||
def _build_indexes(size): | ||
dims = len(size) | ||
N = size[0] | ||
C = size[1] | ||
|
||
view_dims = np.ones((dims,), dtype=np.int64) | ||
view_dims[1] = -1 | ||
indexes = torch.arange(C).view(*view_dims) | ||
indexes = indexes.int() | ||
|
||
return indexes.repeat(N, 1, *size[2:]) | ||
|
||
def compress(self, x): | ||
if self.width == 0: | ||
strings = list() | ||
for i in range(len(x)): | ||
string = encode_array(x[i].flatten().cpu().numpy(), self.data_type) | ||
strings.append(string) | ||
return strings | ||
|
||
indexes = self._build_indexes(x.size()) | ||
return super().compress(x, indexes) | ||
|
||
def decompress(self, strings, size): | ||
output_size = (len(strings), self._quantized_cdf.size(0), *size) | ||
if self.width == 0: | ||
xs = list() | ||
for string in strings: | ||
x = decode_array(string, self.data_type) | ||
x = torch.from_numpy(x.copy()).to(self._quantized_cdf.device) | ||
xs.append(x) | ||
xs = torch.stack(xs).float().reshape(output_size) | ||
return xs | ||
|
||
indexes = self._build_indexes(output_size).to(self._quantized_cdf.device) | ||
return super().decompress(strings, indexes, torch.float32) | ||
|
||
|
||
def encode_array(x: np.ndarray, data_type: str) -> bytes: | ||
if data_type == "float32": | ||
return x.astype(np.float32).tobytes() | ||
if data_type == "float16": | ||
return x.astype(np.float16).tobytes() | ||
# Zou+, ISM 21 | ||
elif data_type == "uint8": | ||
bias = x.min() | ||
x_ = x - bias | ||
scale: float = (255 / x_.max()).astype(np.float32) | ||
arr_qua = np.round(x_ * scale).astype(np.uint8) | ||
return arr_qua.tobytes() + bias.tobytes() + scale.tobytes() | ||
else: | ||
raise NotImplementedError | ||
|
||
|
||
def decode_array(string: bytes, data_type: str) -> np.ndarray: | ||
if data_type == "float32": | ||
return np.frombuffer(string, dtype=np.float32) | ||
if data_type == "float16": | ||
return np.frombuffer(string, dtype=np.float16).astype(np.float32) | ||
# Zou+, ISM 21 | ||
elif data_type == "uint8": | ||
arr = np.frombuffer(string[:-8], dtype=np.uint8) | ||
bias = np.frombuffer(string[-8:-4], dtype=np.float32) | ||
scale = np.frombuffer(string[-4:], dtype=np.float32) | ||
return arr / scale + bias | ||
else: | ||
raise NotImplementedError |
Empty file.
Oops, something went wrong.