Skip to content

jakhon37/ADAS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 

Repository files navigation

Advanced Driver Assistance Systems (ADAS) are designed to enhance vehicle safety and provide a better driving experience by automating and improving certain aspects of driving. ADAS can include features like adaptive cruise control, lane departure warning, collision avoidance, and more. Implementing ADAS functionalities on a platform like the NVIDIA Jetson Nano involves combining hardware components and software algorithms.

Implementing ADAS with Jetson Nano

Here is a step-by-step guide on how you can get started with an ADAS project using the NVIDIA Jetson Nano:

1. Setting Up the Jetson Nano

Hardware Requirements:

  • NVIDIA Jetson Nano Developer Kit
  • MicroSD card (32GB or larger)
  • Power supply (5V 4A recommended)
  • Camera (preferably a stereo camera or depth camera)
  • Optional: Ultrasonic sensors, LiDAR, or Radar for advanced features
  • Monitor, keyboard, and mouse

Software Requirements:

  • JetPack SDK
  • Python libraries: OpenCV, NumPy, etc.
  • Deep learning frameworks: TensorFlow or PyTorch
  • ROS (Robot Operating System) for integrating different sensors and controls

2. Initial Setup

  1. Flash the MicroSD Card:

    • Download and flash the JetPack image onto the MicroSD card.
  2. Boot the Jetson Nano:

    • Insert the MicroSD card, connect peripherals, and power on the Jetson Nano.
  3. Install Required Libraries:

    • Update the system and install essential libraries:
      sudo apt-get update
      sudo apt-get upgrade
      sudo apt-get install python3-opencv
      sudo apt-get install python3-numpy
      sudo apt-get install ros-melodic-desktop-full
      pip3 install tensorflow

3. Developing ADAS Features

Step 1: Lane Detection

  1. Capture Video Frames:

    import cv2
    
    cap = cv2.VideoCapture(0)
    if not cap.isOpened():
        print("Error: Could not open video stream.")
        exit()
    
    while True:
        ret, frame = cap.read()
        if not ret:
            break
    
        cv2.imshow('ADAS - Lane Detection', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    cap.release()
    cv2.destroyAllWindows()
  2. Implement Lane Detection:

    import numpy as np
    
    def region_of_interest(img, vertices):
        mask = np.zeros_like(img)
        cv2.fillPoly(mask, vertices, 255)
        masked_image = cv2.bitwise_and(img, mask)
        return masked_image
    
    def draw_lines(img, lines):
        if lines is not None:
            for line in lines:
                for x1, y1, x2, y2 in line:
                    cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 5)
    
    while True:
        ret, frame = cap.read()
        if not ret:
            break
    
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        blur = cv2.GaussianBlur(gray, (5, 5), 0)
        edges = cv2.Canny(blur, 50, 150)
    
        height, width = edges.shape
        roi_vertices = [(0, height), (width / 2, height / 2), (width, height)]
        cropped_edges = region_of_interest(edges, np.array([roi_vertices], np.int32))
    
        lines = cv2.HoughLinesP(cropped_edges, 1, np.pi / 180, 50, maxLineGap=50)
        draw_lines(frame, lines)
    
        cv2.imshow('ADAS - Lane Detection', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    cap.release()
    cv2.destroyAllWindows()

Step 2: Object Detection

  1. Load a Pretrained Model:

    • Use TensorFlow or PyTorch to load a pretrained object detection model (e.g., SSD, YOLO).
  2. Perform Object Detection:

    import tensorflow as tf
    
    model = tf.saved_model.load("ssd_mobilenet_v2_fpnlite_320x320/saved_model")
    detection_fn = model.signatures['serving_default']
    
    def detect_objects(image):
        input_tensor = tf.convert_to_tensor(image)
        input_tensor = input_tensor[tf.newaxis, ...]
        detections = detection_fn(input_tensor)
        return detections
    
    while True:
        ret, frame = cap.read()
        if not ret:
            break
    
        image_np = np.array(frame)
        detections = detect_objects(image_np)
    
        for i in range(int(detections.pop('num_detections'))):
            score = detections['detection_scores'][i].numpy()
            if score > 0.5:
                bbox = detections['detection_boxes'][i].numpy()
                ymin, xmin, ymax, xmax = bbox
                (left, right, top, bottom) = (xmin * width, xmax * width,
                                              ymin * height, ymax * height)
                cv2.rectangle(frame, (int(left), int(top)), (int(right), int(bottom)), (0, 255, 0), 2)
    
        cv2.imshow('ADAS - Object Detection', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    cap.release()
    cv2.destroyAllWindows()

Step 3: Integrate ADAS Features

  1. Combine Lane Detection and Object Detection:

    • Run both algorithms in parallel to provide comprehensive ADAS functionality.
  2. Add Collision Avoidance:

    • Use depth cameras or additional sensors (e.g., ultrasonic sensors) to measure the distance to detected objects.
    • Implement logic to alert the driver or take corrective action if a collision is imminent.

Step 4: Optimize and Deploy

  1. Optimize Models:

    • Use NVIDIA TensorRT for optimizing the deep learning models for real-time performance on the Jetson Nano.
  2. Deployment:

    • Package the ADAS application for deployment.
    • Ensure the system can start automatically and run efficiently in a vehicle environment.

4. Further Improvements

  • Enhance Detection Algorithms:

    • Experiment with more advanced models and techniques to improve detection accuracy.
    • Use a diverse and extensive dataset for training your models.
  • Expand ADAS Capabilities:

    • Integrate additional features such as adaptive cruise control, traffic sign recognition, and pedestrian detection.
    • Use more sophisticated sensors (e.g., LiDAR, Radar) for improved perception.

By following these steps, you can develop a functional ADAS project using the NVIDIA Jetson Nano. This project will help you understand and implement key features of advanced driver assistance systems, contributing to safer and more intelligent vehicles.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published