Skip to content

haofanwang/DWPose

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DWPose

This repository refactors the inference from the official implementation of DWPose.

Installation

# git clone this repository
git clone https://github.com/haofanwang/DWPose.git
cd DWPose

# install required packages
pip install -r requirements.txt

# Set environment
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.1"
mim install "mmdet>=3.1.0"
mim install "mmpose>=1.1.0"

If you meet any download issues, please refer to installation instructions.

Download Checkpoints

Download the pretrained detection model and pose model, and save them under ./ckpts. It is also possible to use other detection models from MMDetection and pose model.

Quick Inference

import cv2
import numpy as np
from PIL import Image

from utils import *
from dwpose import DWposeDetector

# set configs
det_config = './dwpose/yolox_config/yolox_l_8xb8-300e_coco.py'
det_ckpt = './ckpts/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth'
pose_config = './dwpose/dwpose_config/dwpose-l_384x288.py'
pose_ckpt = './ckpts/dw-ll_ucoco_384.pth'

# set device
device = "cuda:0"

# init
dwprocessor = DWposeDetector(det_config, det_ckpt, pose_config, pose_ckpt, device)

# infer
image_dir = "./assets/test.jpeg"
input_image = cv2.imread(image_dir)
input_image = HWC3(input_image)
input_image = resize_image(input_image, resolution=512)

detected_map = dwprocessor(input_image)
detected_map = HWC3(detected_map)

detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
cv2.imwrite(image_dir.split('/')[-1], detected_map)

About

Inference code for DWCode

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages