Skip to content

dsanno/chainer-neural-style

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Chainer implementation of style transfer using neural network

Implementation of

Requirements

Usage

Download VGG 16 layers caffe model

Convert caffemodel to chainer model

$ python src/create_chainer_model.py

Transfer image style using "A Neural Algorithm of Artistic Style"

$ python src/run.py -c content_image.png -s style_image.png -o out_dir -g 0

Options:

  • -c (--content) <file path>: required
    Content image file path
  • -s (--style) <file path>: required
    Style image file path
  • -o (--out_dir) <directory path>: optional
    Output directory path (default: output)
  • -g (--gpu) <GPU device index>: optional
    GPU device index. Negative value indecates CPU (default: -1)
  • --w (--width) <integer>: optional
    Image width (default: 256)
  • --iter <integer>: optional
    Number of iteration for each iteration (default: 2000)
  • --initial_image <string|: optional Initial image of optimization: "random" or "content" (default: random)
  • --keep_color: optional Keep color phase if specified
  • --match_color_histogram: optional
    Use "Color histogram matching" algorithm in "Preserving Color in Neural Artistic Style Transfer"
  • --luminance_only: optional
    Use "Luminance-only" algorithm in "Preserving Color in Neural Artistic Style Transfer"
  • --resolution_num <int>: optional
    Number of resolutions (default: 1)
  • --save_iter <integer>: optional
    Number of iteration for saving images (default: 100)
  • --lr <float>: optional
    Learning rate: "alpha" value of ADAM (default: 10)
  • --content_weight <float>: optional
    Weight of content loss (default: 0.005)
  • --style_weight <float>: optional
    Weight of style loss (default: 1)
  • --tv_weight <float>: optional
    Weight of total variation loss (default: 1e-5)

Transfer image style using Markov Random Fields algorithm

$ python src/run_mrf.py -c content_image.png -s style_image.png -o out_dir -g 0

Options:

  • -c (--content) <file path>: required
    Content image file path
  • -s (--style) <file path>: required
    Style image file path
  • -o (--out_dir) <directory path>: optional
    Output directory path (default: output)
  • -g (--gpu) <GPU device index>: optional
    GPU device index. Negative value indecates CPU (default: -1)
  • --w (--width) <integer>: optional
    Image width (default: 256)
  • --iter <integer>: optional
    Number of iteration for each resolution (default: 100)
  • --initial_image <string|: optional Initial image of optimization: "random" or "content" (default: content)
  • --keep_color: optional Keep color phase if specified
  • --match_color_histogram: optional
    Use "Color histogram matching" algorithm in "Preserving Color in Neural Artistic Style Transfer"
  • --luminance_only: optional
    Use "Luminance-only" algorithm in "Preserving Color in Neural Artistic Style Transfer"
  • --resolution_num <int>: optional
    Number of resolutions (default: 3)
  • --save_iter <integer>: optional
    Number of iteration for saving images (default: 10)
  • --lr <float>: optional
    Learning rate: "alpha" value of ADAM (default: 2.0)
  • --content_weight <float>: optional
    Weight of content loss (default: 0.2)
  • --style_weight <float>: optional
    Weight of style loss (default: 1)
  • --tv_weight <float>: optional
    Weight of total variation loss (default: 1e-5)

License

MIT License

About

implementation of neural style using Chainer

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages