Skip to content

dsanno/chainer-dqn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Q-Network Implementation using chainer

Requirement

Supported Game

Usage

Run the game and:

python src/train.py -g 0 -o model/dqn --random 0.4 --random_reduction 0.00002 --min_random 0.1

Options:

  • -g, --gpu: (optional) GPU device index (default: -1).
  • -i, --input: (optional) input model file path without extension.
  • -o, --output: (required) output model file path without extension.
  • -r, --random: (optional) randomness of playing (default: 0.2).
  • --pool_size: (optional) number of frames of memory pool (default: 50000).
  • --random_reduction: (optional) randomness reduction rate per iteration (default: 0.00002).
  • --min_random: (optional) minimum randomness of playing (default: 0.1).
  • --double_dqn: (optional) use Double DQN algorithm
  • --update_target_interval: (optional) interval to update target Q function of Double DQN (default: 2000)

License

MIT License

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages