Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Clean up symbolic cholesky factorization #1290

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 38 additions & 53 deletions nalgebra-sparse/src/factorization/cholesky.rs
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@ use crate::csc::CscMatrix;
use crate::ops::serial::spsolve_csc_lower_triangular;
use crate::ops::Op;
use crate::pattern::SparsityPattern;
use core::{iter, mem};
use nalgebra::{DMatrix, DMatrixView, DMatrixViewMut, RealField};
use std::fmt::{Display, Formatter};

Expand Down Expand Up @@ -291,87 +290,73 @@ impl<T: RealField> CscCholesky<T> {
}
}

/// For a given sparsity pattern, a specified row, and a precomputed elimination tree
/// marks is a buffer which indicates which nodes have been traversed, and is reset before each
/// use. `out` stores the row indices of the nonzero elements.
fn reach(
pattern: &SparsityPattern,
j: usize,
max_j: usize,
tree: &[usize],
marks: &mut Vec<bool>,
row: usize,
etree: &[usize],
marks: &mut [bool],
out: &mut Vec<usize>,
) {
marks.clear();
marks.resize(tree.len(), false);
assert_eq!(marks.len(), etree.len());
marks.fill(false);

// TODO: avoid all those allocations.
let mut tmp = Vec::new();
let mut res = Vec::new();
let start_len = out.len();

for &irow in pattern.lane(j) {
let mut curr = irow;
while curr != usize::max_value() && curr <= max_j && !marks[curr] {
for mut curr in pattern.lane(row).iter().copied() {
while curr != usize::MAX && curr <= row && !marks[curr] {
marks[curr] = true;
tmp.push(curr);
curr = tree[curr];
out.push(curr);
curr = etree[curr];
}

tmp.append(&mut res);
mem::swap(&mut tmp, &mut res);
}

res.sort_unstable();

out.append(&mut res);
out[start_len..].sort_unstable();
}

fn nonzero_pattern(m: &SparsityPattern) -> (SparsityPattern, SparsityPattern) {
let etree = elimination_tree(m);
// Note: We assume CSC, therefore rows == minor and cols == major
let (nrows, ncols) = (m.minor_dim(), m.major_dim());

// note that m must be square.
let n = m.minor_dim();
let mut rows = Vec::with_capacity(m.nnz());
let mut col_offsets = Vec::with_capacity(ncols + 1);
let mut marks = Vec::new();
let mut col_offsets = Vec::with_capacity(n + 1);
col_offsets.push(0);

let mut marks = vec![false; etree.len()];

// NOTE: the following will actually compute the non-zero pattern of
// the transpose of l.
col_offsets.push(0);
for i in 0..nrows {
reach(m, i, i, &etree, &mut marks, &mut rows);
for i in 0..n {
reach(m, i, &etree, &mut marks, &mut rows);
col_offsets.push(rows.len());
}

let u_pattern =
SparsityPattern::try_from_offsets_and_indices(nrows, ncols, col_offsets, rows).unwrap();
let u_pattern = SparsityPattern::try_from_offsets_and_indices(n, n, col_offsets, rows).unwrap();

// TODO: Avoid this transpose?
let l_pattern = u_pattern.transpose();

(l_pattern, u_pattern)
}

/// Constructs the elimination tree for a given sparsity pattern.
/// The elimination tree is characterized as:
/// `parent[i] = min{ j > i | U[j,i] != 0 }`, where `U = L^T` is the transpose of the cholesky
/// matrix `L`.
fn elimination_tree(pattern: &SparsityPattern) -> Vec<usize> {
// Note: The pattern is assumed to of a CSC matrix, so the number of rows is
// given by the minor dimension
let nrows = pattern.minor_dim();
let mut forest: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect();
let mut ancestor: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect();

for k in 0..nrows {
for &irow in pattern.lane(k) {
let mut i = irow;

while i < k {
let i_ancestor = ancestor[i];
ancestor[i] = k;

if i_ancestor == usize::max_value() {
forest[i] = k;
break;
}

i = i_ancestor;
}
// note that the tree is square so it doesn't matter if this is the major or minor dim
let n = pattern.minor_dim();
let mut ancestor: Vec<_> = vec![usize::MAX; n];

for (col, mut row) in pattern.entries() {
while col > row {
let parent = ancestor[row];
ancestor[row] = ancestor[row].min(col);
row = parent;
}
}

forest
ancestor
}