-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4 from omelkonian/fix-has-order
Make `HasOrder` follow the same structure as everything else
- Loading branch information
Showing
3 changed files
with
164 additions
and
158 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
{-# OPTIONS --safe #-} | ||
|
||
module Class.HasOrder.Core where | ||
|
||
open import Class.Decidable | ||
open import Data.Empty | ||
open import Data.Product | ||
open import Data.Sum | ||
open import Function | ||
open import Level | ||
open import Relation.Binary | ||
open import Relation.Binary using () renaming (Decidable to Decidable²) | ||
open import Relation.Binary.PropositionalEquality | ||
open import Relation.Nullary | ||
|
||
open Equivalence | ||
|
||
module _ {a} {A : Set a} where | ||
module _ {_≈_ : Rel A a} where | ||
|
||
record HasPreorder : Set (suc a) where | ||
infix 4 _≤_ _<_ _≥_ _>_ | ||
field | ||
_≤_ _<_ : Rel A a | ||
≤-isPreorder : IsPreorder _≈_ _≤_ | ||
<-irrefl : Irreflexive _≈_ _<_ | ||
≤⇔<∨≈ : ∀ {x y} → x ≤ y ⇔ (x < y ⊎ x ≈ y) | ||
|
||
_≥_ = flip _≤_ | ||
_>_ = flip _<_ | ||
|
||
open IsPreorder ≤-isPreorder public | ||
using () | ||
renaming (isEquivalence to ≈-isEquivalence; refl to ≤-refl; trans to ≤-trans) | ||
|
||
_≤?_ : ⦃ _≤_ ⁇² ⦄ → Decidable _≤_ | ||
_≤?_ = dec² | ||
|
||
_<?_ : ⦃ _<_ ⁇² ⦄ → Decidable _<_ | ||
_<?_ = dec² | ||
|
||
infix 4 _<?_ _≤?_ | ||
|
||
<⇒≤∧≉ : ∀ {x y} → x < y → x ≤ y × ¬ (x ≈ y) | ||
<⇒≤∧≉ x<y = from ≤⇔<∨≈ (inj₁ x<y) , λ x≈y → <-irrefl x≈y x<y | ||
|
||
≤∧≉⇒< : ∀ {x y} → x ≤ y × ¬ (x ≈ y) → x < y | ||
≤∧≉⇒< {x} {y} (x≤y , ¬x≈y) with to ≤⇔<∨≈ x≤y | ||
... | inj₁ x<y = x<y | ||
... | inj₂ x≈y = ⊥-elim (¬x≈y x≈y) | ||
|
||
≤-antisym⇒<-asym : Antisymmetric _≈_ _≤_ → Asymmetric _<_ | ||
≤-antisym⇒<-asym antisym x<y y<x = | ||
proj₂ (<⇒≤∧≉ x<y) $ antisym (proj₁ $ <⇒≤∧≉ x<y) (proj₁ $ <⇒≤∧≉ y<x) | ||
|
||
open HasPreorder ⦃...⦄ | ||
|
||
record HasDecPreorder : Set (suc a) where | ||
field ⦃ hasPreorder ⦄ : HasPreorder | ||
⦃ dec-≤ ⦄ : _≤_ ⁇² | ||
⦃ dec-< ⦄ : _<_ ⁇² | ||
|
||
record HasPartialOrder : Set (suc a) where | ||
field | ||
⦃ hasPreorder ⦄ : HasPreorder | ||
≤-antisym : Antisymmetric _≈_ _≤_ | ||
|
||
≤-isPartialOrder : IsPartialOrder _≈_ _≤_ | ||
≤-isPartialOrder = record { isPreorder = ≤-isPreorder ; antisym = ≤-antisym } | ||
|
||
<-asymmetric : Asymmetric _<_ | ||
<-asymmetric = ≤-antisym⇒<-asym ≤-antisym | ||
|
||
open IsEquivalence ≈-isEquivalence renaming (sym to ≈-sym) | ||
|
||
<-trans : Transitive _<_ | ||
<-trans i<j j<k = | ||
let | ||
j≤k = proj₁ $ <⇒≤∧≉ j<k; i≤j = proj₁ $ <⇒≤∧≉ i<j | ||
i≈k⇒j≈k = λ i≈k → ≤-antisym j≤k $ ≤-trans (from ≤⇔<∨≈ $ inj₂ (≈-sym i≈k)) i≤j | ||
in | ||
≤∧≉⇒< (≤-trans i≤j j≤k , (proj₂ $ <⇒≤∧≉ j<k) ∘ i≈k⇒j≈k) | ||
|
||
<⇒¬>⊎≈ : ∀ {x y} → x < y → ¬ (y < x ⊎ y ≈ x) | ||
<⇒¬>⊎≈ x<y (inj₁ y<x) = <-asymmetric x<y y<x | ||
<⇒¬>⊎≈ x<y (inj₂ x≈y) = <-irrefl (≈-sym x≈y) x<y | ||
|
||
record HasDecPartialOrder : Set (suc a) where | ||
field | ||
⦃ hasPartialOrder ⦄ : HasPartialOrder | ||
⦃ dec-≤ ⦄ : _≤_ ⁇² | ||
⦃ dec-< ⦄ : _<_ ⁇² | ||
|
||
HasPreorder≡ = HasPreorder {_≈_ = _≡_} | ||
HasDecPreorder≡ = HasDecPreorder {_≈_ = _≡_} | ||
HasPartialOrder≡ = HasPartialOrder {_≈_ = _≡_} | ||
HasDecPartialOrder≡ = HasDecPartialOrder {_≈_ = _≡_} | ||
|
||
open HasPreorder ⦃...⦄ public | ||
open HasPartialOrder ⦃...⦄ public hiding (hasPreorder) | ||
open HasDecPartialOrder ⦃...⦄ public hiding (hasPartialOrder) | ||
|
||
module _ {a} {A : Set a} {_≈_ : Rel A a} where | ||
|
||
module _ {_≤_ : Rel A a} where | ||
import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ as SNS | ||
|
||
module _ (≤-isPreorder : IsPreorder _≈_ _≤_) | ||
(_≈?_ : Decidable² _≈_) where | ||
|
||
hasPreorderFromNonStrict : HasPreorder | ||
hasPreorderFromNonStrict = record | ||
{ _≤_ = _≤_ | ||
; _<_ = SNS._<_ | ||
; ≤-isPreorder = ≤-isPreorder | ||
; <-irrefl = SNS.<-irrefl | ||
; ≤⇔<∨≈ = λ {a b} → mk⇔ | ||
(λ a≤b → case (a ≈? b) of λ where (yes p) → inj₂ p ; (no ¬p) → inj₁ (a≤b , ¬p)) | ||
λ where (inj₁ a<b) → proj₁ a<b ; (inj₂ a≈b) → IsPreorder.reflexive ≤-isPreorder a≈b | ||
} | ||
|
||
hasPartialOrderFromNonStrict : Antisymmetric _≈_ _≤_ → HasPartialOrder | ||
hasPartialOrderFromNonStrict antsym = record | ||
{ hasPreorder = hasPreorderFromNonStrict | ||
; ≤-antisym = antsym | ||
} | ||
|
||
module _ {_<_ : Rel A a} where | ||
|
||
import Relation.Binary.Construct.StrictToNonStrict _≈_ _<_ as SNS | ||
|
||
module _ (<-isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_) where | ||
|
||
hasPreorderFromStrictPartialOrder : HasPreorder | ||
hasPreorderFromStrictPartialOrder = record | ||
{ _≤_ = SNS._≤_ | ||
; _<_ = _<_ | ||
; ≤-isPreorder = SNS.isPreorder₂ <-isStrictPartialOrder | ||
; <-irrefl = <-isStrictPartialOrder .IsStrictPartialOrder.irrefl | ||
; ≤⇔<∨≈ = mk⇔ id id | ||
} | ||
|
||
instance _ = hasPreorderFromStrictPartialOrder | ||
|
||
hasPartialOrderFromStrictPartialOrder : HasPartialOrder | ||
hasPartialOrderFromStrictPartialOrder = record | ||
{ hasPreorder = hasPreorderFromStrictPartialOrder | ||
; ≤-antisym = SNS.isPartialOrder <-isStrictPartialOrder .IsPartialOrder.antisym | ||
} | ||
|
||
|
||
module _ (<-isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_) where | ||
|
||
private spo = IsStrictTotalOrder.isStrictPartialOrder <-isStrictTotalOrder | ||
|
||
hasPreorderFromStrictTotalOrder : HasPreorder | ||
hasPreorderFromStrictTotalOrder = hasPreorderFromStrictPartialOrder spo | ||
|
||
hasPartialOrderFromStrictTotalOrder : HasPartialOrder | ||
hasPartialOrderFromStrictTotalOrder = hasPartialOrderFromStrictPartialOrder spo |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters