Skip to content

ZIYU-DEEP/Reasoning-in-Reasoning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Reasoning in Reasoning

This repository is based on ReProver.

0. Structure

root
|== generator
│   └── confs
│       └── ....yaml
│   └── datamodule.py
│   └── model.py
│   └── main.py
|== prover_rir
│   └── search_tree.py
│   └── proof_search.py
│   └── model.py
|== utils
│   └── stats.py
│   └── data_stats.py
│   └── download_data.py
│   └── trace_repo.py
|== scripts
│   └── eval
│       └── ....sh
│   └── train
│       └── ....sh
|== common.py
|== requirements.txt

1. Setup

1.1. Environment

# Set up the environment
cd RiR
conda create -n dojo python=3.10
conda activate dojo
pip install -r requirements.txt

# Set up elan
curl https://raw.githubusercontent.com/leanprover/elan/master/elan-init.sh -sSf | sh
source $HOME/.elan/env

# You may add the following to your .bashrc
echo 'export PATH="$HOME/.elan/bin:$PATH"' >> ~/.bashrc
echo 'export GITHUB_ACCESS_TOKEN="YOUR_GITHUB_ACCESS_TOKEN"' >> ~/.bashrc

# Make them effective
source ~/.bashrc
conda activate dojo
chmod -R +x ./scripts
# Add the project directory to PYTHONPATH
PROJECT_DIR=$(pwd)
export PYTHONPATH="$PYTHONPATH:$PROJECT_DIR"

1.2. Download Data

Download the LeanDojo Dataset

python utils/download_data.py  # or python utils/download_data_lambda.py if it fails
python utils/trace_repos.py

Download the miniF2F dataset

python utils/dojo_mini.py
python utils/abstract_minif2f.py

Now you should have both leandojo_benchmark_4 and minif2f under $PROJECT_DIR/data.

1.3. Install Git LFS

If you have sudo permissions:

sudo apt install git-lfs

If you do not have sudo permissions:

# Define the working directory where Git LFS will be installed.
WORKING_DIR=${WORKING_DIR}  # Replace ${WORKING_DIR} with the desired directory
mkdir -p $WORKING_DIR/.local/bin && cd $WORKING_DIR

# Download the Git LFS binary for Linux and extract the files
wget https://github.com/git-lfs/git-lfs/releases/download/v3.4.1/git-lfs-linux-amd64-v3.4.1.tar.gz && tar xvf git-lfs-linux-amd64-v3.4.1.tar.gz

# Modify the prefix for installation
cd git-lfs-3.4.1/ && chmod +x install.sh && vi install.sh
# Modify the prefix from /usr/local/ to $WORKING_DIR/.local
# This step is manual
# Or sed -i "s|/usr/local|$WORKING_DIR/.local|g" install.sh

# Add the installation directory to PATH and run
echo 'export PATH="'$WORKING_DIR'/.local/bin:$PATH"' >> ~/.bashrc
source ~/.bashrc && ./install.sh

# Verify the Git LFS installation and install for this repo
git-lfs version

1.4. Download Lightning Checkpoints

cd $PROJECT_DIR
git lfs install && mkdir ckpts

Download the Reprover Checkpoints

cd $PROJECT_DIR/ckpts
git clone https://huggingface.co/kaiyuy/leandojo-pl-ckpts.git
cd leandojo-pl-ckpts
git lfs fetch --all

Download the RiR Checkpoints

cd $PROJECT_DIR/ckpts
git clone https://huggingface.co/cat-searcher/rir-pl-ckpts.git
cd rir-pl-ckpts
git lfs fetch --all

2. Evaluation

Below is an example command. See the ./scripts/ folder for evaluation with different models and settings.

# Make them executable
cd $PROJECT_DIR
chmod -R +x ./scripts

# Sanity check
./scripts/eval/sanity_check.sh

# Run with RiR
./scripts/eval/leandojo_rir.sh

# Run with default reprover
./scripts/eval/leandojo_default.sh

3. Training

Below is an example command. See the ./scripts/ folder for more information.

# Make them executable
cd $PROJECT_DIR
chmod -R +x ./scripts

# Train the goal generator
./scripts/train/planner.sh

# Train the goal-driven tactic generator
./scripts/train/actor.sh

# Train the joint generator
./scripts/train/joint.sh

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •