Skip to content
forked from fudan-zvg/SETR

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

License

Notifications You must be signed in to change notification settings

MengyangPu/SETR

 
 

Repository files navigation

SEgmentation TRansformers -- SETR

image

Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers,
Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, Li Zhang,
CVPR 2021

Installation

Our project is developed based on MMsegmentation. Please follow the official MMsegmentation INSTALL.md and getting_started.md for installation and dataset preparation.

🔥🔥 SETR is on MMsegmentation. 🔥🔥

A from-scratch setup script

Linux

Here is a full script for setting up SETR with conda and link the dataset path (supposing that your dataset path is $DATA_ROOT).

conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab

conda install pytorch=1.6.0 torchvision cudatoolkit=10.1 -c pytorch -y
pip install mmcv-full==1.2.2 -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html
git clone https://github.com/fudan-zvg/SETR.git
cd SETR
pip install -e .  # or "python setup.py develop"
pip install -r requirements/optional.txt

mkdir data
ln -s $DATA_ROOT data

Windows(Experimental)

Here is a full script for setting up SETR with conda and link the dataset path (supposing that your dataset path is %DATA_ROOT%. Notice: It must be an absolute path).

conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab

conda install pytorch=1.6.0 torchvision cudatoolkit=10.1 -c pytorch
set PATH=full\path\to\your\cpp\compiler;%PATH%
pip install mmcv

git clone https://github.com/fudan-zvg/SETR.git
cd SETR
pip install -e .  # or "python setup.py develop"
pip install -r requirements/optional.txt

mklink /D data %DATA_ROOT%

Main results

Cityscapes

Method Crop Size Batch size iteration set mIoU model config
SETR-Naive 768x768 8 40k val 77.36 google drive config
SETR-Naive 768x768 8 80k val 77.90 google drive config
SETR-MLA 768x768 8 40k val 76.65 google drive config
SETR-MLA 768x768 8 80k val 77.24 google drive config
SETR-PUP 768x768 8 40k val 78.39 google drive config
SETR-PUP 768x768 8 80k val 79.34 google drive config
SETR-Naive-DeiT 768x768 8 40k val 77.85 config
SETR-Naive-DeiT 768x768 8 80k val 78.66 config
SETR-MLA-DeiT 768x768 8 40k val 78.04 config
SETR-MLA-DeiT 768x768 8 80k val 78.98 config
SETR-PUP-DeiT 768x768 8 40k val 78.79 config
SETR-PUP-DeiT 768x768 8 80k val 79.45 config

ADE20K

Method Crop Size Batch size iteration set mIoU mIoU(ms+flip) model Config
SETR-Naive 512x512 16 160k Val 48.06 48.80 google drive config
SETR-MLA 512x512 8 160k val 47.79 50.03 google drive config
SETR-MLA 512x512 16 160k val 48.64 50.28 config
SETR-MLA-Deit 512x512 16 160k val 46.15 47.71 config
SETR-PUP 512x512 16 160k val 48.62 50.09 google drive config
SETR-PUP-Deit 512x512 16 160k val 46.34 47.30 config

Pascal Context

Method Crop Size Batch size iteration set mIoU mIoU(ms+flip) model Config
SETR-Naive 480x480 16 80k val 52.89 53.61 google drive config
SETR-MLA 480x480 8 80k val 54.39 55.39 google drive config
SETR-MLA 480x480 16 80k val 55.01 55.83 google drive config
SETR-MLA-DeiT 480x480 16 80k val 52.91 53.74 config
SETR-PUP 480x480 16 80k val 54.37 55.27 google drive config
SETR-PUP-DeiT 480x480 16 80k val 52.00 52.50 config

Get Started

Pre-trained model

The pre-trained model will be automatically downloaded and placed in a suitable location when you run the training command. If you are unable to download due to network reasons, you can download the pre-trained model from here (ViT) and here (DeiT).

Train

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} 
# For example, train a SETR-PUP on Cityscapes dataset with 8 GPUs
./tools/dist_train.sh configs/SETR/SETR_PUP_768x768_40k_cityscapes_bs_8.py 8
  • Tensorboard

    If you want to use tensorboard, you need to pip install tensorboard and uncomment the Line 6 dict(type='TensorboardLoggerHook') of SETR/configs/_base_/default_runtime.py.

Single-scale testing

./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM}  [--eval ${EVAL_METRICS}]
# For example, test a SETR-PUP on Cityscapes dataset with 8 GPUs
./tools/dist_test.sh configs/SETR/SETR_PUP_768x768_40k_cityscapes_bs_8.py \
work_dirs/SETR_PUP_768x768_40k_cityscapes_bs_8/iter_40000.pth \
8 --eval mIoU

Multi-scale testing

Use the config file ending in _MS.py in configs/SETR.

./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM}  [--eval ${EVAL_METRICS}]
# For example, test a SETR-PUP on Cityscapes dataset with 8 GPUs
./tools/dist_test.sh configs/SETR/SETR_PUP_768x768_40k_cityscapes_bs_8_MS.py \
work_dirs/SETR_PUP_768x768_40k_cityscapes_bs_8/iter_40000.pth \
8 --eval mIoU

Generate the png files to be submit to the official evaluation server

  • Cityscapes

    First, add following to config file configs/SETR/SETR_PUP_768x768_40k_cityscapes_bs_8.py,

    data = dict(
        test=dict(
            img_dir='leftImg8bit/test',
            ann_dir='gtFine/test'))

    Then run test

    ./tools/dist_test.sh configs/SETR/SETR_PUP_768x768_40k_cityscapes_bs_8.py \
        work_dirs/SETR_PUP_768x768_40k_cityscapes_bs_8/iter_40000.pth \
        8 --format-only --eval-options "imgfile_prefix=./SETR_PUP_768x768_40k_cityscapes_bs_8_test_results"

    You will get png files under directory ./SETR_PUP_768x768_40k_cityscapes_bs_8_test_results. Run zip -r SETR_PUP_768x768_40k_cityscapes_bs_8_test_results.zip SETR_PUP_768x768_40k_cityscapes_bs_8_test_results/ and submit the zip file to evaluation server.

  • ADE20k

    ADE20k dataset could be download from this link

    First, add following to config file configs/SETR/SETR_PUP_512x512_160k_ade20k_bs_16.py,

    data = dict(
        test=dict(
            img_dir='images/testing',
            ann_dir='annotations/testing'))

    Then run test

    ./tools/dist_test.sh configs/SETR/SETR_PUP_512x512_160k_ade20k_bs_16.py \
        work_dirs/SETR_PUP_512x512_160k_ade20k_bs_16/iter_1600000.pth \
        8 --format-only --eval-options "imgfile_prefix=./SETR_PUP_512x512_160k_ade20k_bs_16_test_results"

    You will get png files under ./SETR_PUP_512x512_160k_ade20k_bs_16_test_results directory. Run zip -r SETR_PUP_512x512_160k_ade20k_bs_16_test_results.zip SETR_PUP_512x512_160k_ade20k_bs_16_test_results/ and submit the zip file to evaluation server.

Please see getting_started.md for the more basic usage of training and testing.

Reference

@inproceedings{SETR,
    title={Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers}, 
    author={Zheng, Sixiao and Lu, Jiachen and Zhao, Hengshuang and Zhu, Xiatian and Luo, Zekun and Wang, Yabiao and Fu, Yanwei and Feng, Jianfeng and Xiang, Tao and Torr, Philip H.S. and Zhang, Li},
    booktitle={CVPR},
    year={2021}
}

License

MIT

Acknowledgement

Thanks to previous open-sourced repo:
MMsegmentation
pytorch-image-models

About

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.7%
  • Other 0.3%