Skip to content

Lukeli0425/Stock-Forecast-with-GPR

Repository files navigation

Stock Forecast with GPR

Course Project of Stochastic Processes

This is my implemention of the course project for Stochastic Processes. This repo contains the code of a Guassian Process Regression (GPR) stock prices predictor. The algorithm is implemented with Python and Scikit Learn.

File List

./Data/				存放股票数据
./Results/			预测结果曲线(代码自动生成)
./Results_SE/			只使用SE协方差函数的预测结果
./Results_ESS/			只使用ESS协方差函数的预测结果
./Results_63SE+17ESS/		使用SE和ESS组合的协方差函数的预测结果
./References			参考文献
gpr.yaml			虚拟环境文件
predict.py			预测主程序
data_plotter.py		      	封装绘图给你
gpr_wrapper.py			封装GPR模型
data_handler.py			封装读入数据功能

代码运行说明

  1. 创建虚拟环境

代码主要依赖包括:numpy、pandas、sklearn和matplotlib,下载这四个包即可运行代码。也可根据环境文件gpr.yaml来配置环境。

  1. 数据格式

直接从Nasdaq下载的csv文件可以直接使用。或者将csv文件第一列命名为”Date”,记录交易日期,第5列命名为”Close”记录对应价格,例如下图所示:

  1. 运行代码

将股票数据csv文件放到./Data文件夹下,运行predict.py后即可在/Results文件夹查看预测结果。

References

[1] M.Ebden, " Gaussian Processes for Regression An Quick Introduction”

[2] M.T. Farrell, et al, “Gaussian Process Regression Models for Predicting Stock Trends”.

[3] Long-term Stock Market Forecasting using Gaussian Processes

[4] scikit-learn.gaussian_process官方文档

[5] https://github.com/gdroguski/GaussianProcesses/

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages