- 新增了
header_only_ikdtree
分支,只有两个头文件,非常方便直接嵌入您自己的工程中。 - 在
header_only_ikdtree
分支中,修复了一些引起编译报警的代码(如int和unsigned int做比较,unused variable等)。
「读者在阅读此代码和注释前,应当至少阅读fast-lio2或者ikd-tree论文之一,并充分理解ikd-tree算法原理。」
在Fast-Lio2中,class KD_TREE
被调用的接口函数
&成员变量
有(按调用顺序):
acquire_removed_points()
//获取所有被标记为delete的点;在算法中虽然被调用了一次,但没有实际意义,可忽略。Delete_Point_Boxes()
//删除指定Boxes中的点;配准用的localmap(也即ikdtree)的边界是需要跟着激光雷达移动的,该函数用于删除激光雷达移动后位于边界外的点。在算法循环的 lasermap_fov_segment() 函数中被调用一次。//注:lasermap_fov_segment()函数的作用正是更新localmap边界。Root_Node
//成员变量,ikdtree根节点指针;算法随时调用。set_downsample_param()
//设置体素降采样分辨率;仅在初始化ikdtree时调用一次。Build()
//构建平衡的(sub)kdtree;仅在初始化时调用一次,用第一帧点云初始化ikdtree。validnum()
//返回当前总kdtree中有效点的数量;每次算法循环都会调用一次,获取当前ikdtree地图的点云数量。size()
//返回当前总kdtree中所有点的数量,包括无效点;算法随时调用。PCL_Storage
//成员变量,ikdtree中维护的点云内存块指针;仅在需要可视化ikdtree地图时,在算法循环中被调用。flatten()
//将指定Node(即kdtree结构中的节点)下的点云另存为线性化排列的点云;仅在需要可视化ikdtree地图时,在算法循环中被调用。Nearest_Search()
//支持kNN,ranged-kNN搜索;对该函数的调用被封装在h_share_model()函数中,而h_share_model()又被作为一个函数对象传递给 class esekf 的实例 kf 中,后者作为前端完成基于ESKF的位姿估算,体现为算法循环中的 kf.update_iterated_dyn_share_modified() 语句。Add_Points()
//添加新的点到ikdtree结构中;用于在当前帧配准完成后,将当前帧中有价值的点插入进来,在专门负责增量式更新的 map_incremental() 中被调用。
上述调用接口中的重要函数已详细注释,包括Delete_Point_Boxes()
,Build()
,Nearest_Search()
,Add_Points()
。
ikd-Tree is an incremental k-d tree designed for robotic applications. The ikd-Tree incrementally updates a k-d tree with new coming points only, leading to much lower computation time than existing static k-d trees. Besides point-wise operations, the ikd-Tree supports several features such as box-wise operations and down-sampling that are practically useful in robotic applications.
-
Build a balanced k-d tree -
Build()
-
Dynamically insert points to or delete points from the k-d tree -
Add_Points() / Delete_Points()
-
Delete points inside given axis-aligned bounding boxes -
Delete_Point_Boxes()
-
K Nearest Neighbor Search with range limitation -
Nearest_Search()
-
Acquire points inside a given axis-aligned bounding box on the k-d tree -
Box_Search()
-
Acquire points inside a ball with given radius on the k-d tree -
Radius_Search()
- Browse the User Manual for using our ikd-Tree.
-
Yixi CAI 蔡逸熙: Data structure design and implementation
-
Wei XU 徐威: Incorporation into LiDAR-inertial odometry package FAST_LIO2 (TRO, 2022)
If you are using any code of this repo in your research, please cite at least one of the articles as following:
- ikd-Tree
@article{cai2021ikd,
title={ikd-Tree: An Incremental KD Tree for Robotic Applications},
author={Cai, Yixi and Xu, Wei and Zhang, Fu},
journal={arXiv preprint arXiv:2102.10808},
year={2021}
}
- FAST-LIO2
@article{xu2022fast,
title={Fast-lio2: Fast direct lidar-inertial odometry},
author={Xu, Wei and Cai, Yixi and He, Dongjiao and Lin, Jiarong and Zhang, Fu},
journal={IEEE Transactions on Robotics},
year={2022},
publisher={IEEE}
}
cd ~/catkin_ws/src
git clone [email protected]:hku-mars/ikd-Tree.git
cd ikd-Tree/build
cmake ..
make -j 9
Note: To run Example 2 & 3, please download the PCD file (HKU_demo_pointcloud) into${Your own directory}/ikd-Tree/materials
cd ${Your own directory}/ikd-Tree/build
# Example 1. Check the speed of ikd-Tree
./ikd_tree_demo
# Example 2. Searching-points-by-box examples
./ikd_Tree_Search_demo
# Example 3. An aysnc. exmaple for readers' better understanding of the principle of ikd-Tree
./ikd_tree_async_demo
Example 2: ikd_tree_Search_demo
Box Search Result | Radius Search Result |
---|---|
Points returned from the two search methods are shown in red.
Example 3: ikd_tree_Async_demo
Original Map:
Box Delete Results:
Points removed from ikd-Tree(red) | Map after box delete |
---|---|
This example is to demonstrate the asynchronous phenomenon in ikd-Tree. The points are deleted by attaching 'deleted' on the tree nodes (map shown in the ) instead of being removed from the ikd-Tree immediately. They are removed from the tree when rebuilding process is performed. Please refer to our paper for more details about delete and rebuilding.
-
Thanks Marcus Davi for helps in templating the ikd-Tree for more general applications.
-
Thanks Hyungtae Lim 임형태 for providing application examples on point clouds.
The source code of ikd-Tree is released under GPLv2 license. For commercial use, please contact Mr. Yixi CAI ([email protected]) or Dr. Fu ZHANG ([email protected]).