Skip to content

A Flask app that detects table using ONNX model exported from YOLOv7

Notifications You must be signed in to change notification settings

HoganHPH/Table-Detection-From-YOLOv7-to-Flask

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Flask app detect table using ONNX model exported from YOLOv7

In this repository, I introduce how to convert from trained weight to onnx model and use it for my own custom app without depending on any module of Yolo.

Yolov7

To start, training in YOLOv7 is the first step. Follow: https://github.com/WongKinYiu/yolov7

Dataset

ICDAR 2019: https://github.com/cndplab-founder/ICDAR2019_cTDaR

Demo

infer_result

Requirements

  • Python 3
  • Opencv-python
  • Pillow
  • Flask
  • ONNX
  • ONNX Runtime

Export ONNX Model

As mentioned above, the first step is training in YOLOv7.
From YOLOv7 directory, run export.py as below:

python export.py --weights best.pt --grid --end2end --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 --max-wh 640

The converted weight (eg. 'best.onnx') then is saved in the directory of Flask app: 'app/controller/weights'.

Load and Run detection by ONNX Model

# Load and Check
cuda = torch.cuda.is_available()
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']

onnx_model = onnx.load(weights)
onnx.checker.check_model(onnx_model)
weights = "best.onnx"
# Start ONNX Runtime session
ort_session = ort.InferenceSession(weights, providers=providers)

outname = [i.name for i in ort_session.get_outputs()]
inname = [i.name for i in ort_session.get_inputs()]

inp = {inname[0]: infer_image}

# ONNX inference
outputs = ort_session.run(outname, inp)[0]

Inference

The inference phase and showing results are shown in code: detect.py

Reference