-
Notifications
You must be signed in to change notification settings - Fork 334
/
simulator.py
140 lines (113 loc) · 5.52 KB
/
simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Basic libraries
import os
import sys
import math
import scipy
import random
import collections
import numpy as np
import pandas as pd
import scipy.stats as st
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
# Styling for plots
plt.style.use('seaborn-white')
plt.rc('grid', linestyle="dotted", color='#a0a0a0')
plt.rcParams['axes.edgecolor'] = "#04383F"
class MontoCarloSimulator:
"""
Monto carlo simulator that calculates the historical returns distribution and uses it to predict the future returns
"""
def __init__(self):
print("\n--$ Simulator has been initialized")
def calculate_percentage_change(self, old, new):
"""
Percentage change
"""
return ((new - old) * 100) / old
def draw_portfolio_performance_chart(self, returns_matrix, portfolio_weights_dictionary, strategy_name):
"""
Draw returns chart for portfolio performance
"""
# Get portfolio returns
returns_matrix = np.array(returns_matrix).transpose()
portfolio_weights_vector = np.array([portfolio_weights_dictionary[symbol] for symbol in portfolio_weights_dictionary]).transpose()
portfolio_returns = np.dot(returns_matrix, portfolio_weights_vector)
portfolio_returns_cumulative = np.cumsum(portfolio_returns)
# Plot
x = np.arange(len(portfolio_returns_cumulative))
plt.axhline(y = 0, linestyle = 'dotted', alpha = 0.3, color = 'black')
plt.plot(x, portfolio_returns_cumulative, linewidth = 2.0, label = "Projected Returns from " + str(strategy_name))
plt.title("Simulated Future Returns", fontsize = 14)
plt.xlabel("Bars (Time Sorted)", fontsize = 14)
plt.ylabel("Cumulative Percentage Return", fontsize = 14)
plt.xticks(fontsize = 14)
plt.yticks(fontsize = 14)
def draw_market_performance_chart(self, actual_returns, strategy_name):
"""
Draw actual market returns if future data is available
"""
# Get market returns
cumulative_returns = np.cumsum(actual_returns)
# Plot
x = np.arange(len(cumulative_returns))
plt.axhline(y = 0, linestyle = 'dotted', alpha = 0.3, color = 'black')
plt.plot(x, cumulative_returns, linewidth = 2.0, color = '#282828', linestyle = '--', label = "Market Index Returns")
plt.title("Simulated Future Returns", fontsize = 14)
plt.xlabel("Bars (Time Sorted)", fontsize = 14)
plt.ylabel("Cumulative Percentage Return", fontsize = 14)
plt.xticks(fontsize = 14)
plt.yticks(fontsize = 14)
def simulate_portfolio(self, symbol_names, portfolio_weights_dictionary, portfolio_data_dictionary, future_prices_market, test_or_predict, market_chart, strategy_name, simulation_timesteps = 25):
"""
Simulate portfolio returns in the future
"""
returns_matrix = []
actual_returns_matrix = []
# Iterate over each symbol to get their returns
for symbol in symbol_names:
# Get symbol returns using monte carlo
historical_close_prices = list(portfolio_data_dictionary[symbol]["historical_prices"]["Close"])
future_price_predictions, _ = self.simulate_and_get_future_prices(historical_close_prices, simulation_timesteps = max(simulation_timesteps, len(list(portfolio_data_dictionary[symbol]["future_prices"]))))
predicted_future_returns = [self.calculate_percentage_change(future_price_predictions[i - 1], future_price_predictions[i]) for i in range(1, len(future_price_predictions))]
returns_matrix.append(predicted_future_returns)
# Get portfolio returns
self.draw_portfolio_performance_chart(returns_matrix, portfolio_weights_dictionary, strategy_name)
# Check whether we have actual future data available or not
if test_or_predict == 1:
future_prices_market = [item[4] for item in list(future_prices_market)]
actual_future_prices_returns = [self.calculate_percentage_change(future_prices_market[i - 1], future_prices_market[i]) for i in range(1, len(future_prices_market))]
if market_chart == True:
# Also draw the actual future returns
self.draw_market_performance_chart(actual_future_prices_returns, strategy_name)
def simulate_and_get_future_prices(self, historical_prices, simulation_timesteps = 25):
# Get log returns from historical data
close_prices = historical_prices
returns = [math.log(close_prices[i] / close_prices[i - 1]) for i in range(1, len(close_prices))]
# Get distribution of returns
hist = np.histogram(returns, bins = 32)
hist_dist = scipy.stats.rv_histogram(hist) # Distribution function
predicted_prices = []
# Do 25 iterations to simulate prices
for iteration in range(25):
new_close_prices = [close_prices[-1]]
new_close_prices_percentages = []
for i in range(simulation_timesteps):
random_value = random.uniform(0, 1)
return_value = round(np.exp(hist_dist.ppf(random_value)), 5) # Get simulated return
price_last_point = new_close_prices[-1]
price_next_point = price_last_point * return_value
percentage_change = self.calculate_percentage_change(price_last_point, price_next_point)
# Add to list
new_close_prices.append(price_next_point)
predicted_prices.append(new_close_prices)
# Calculate confidence intervals and average future returns. Conf intervals are not being used right now
conf_intervals = st.t.interval(0.95, len(predicted_prices), loc=np.mean(predicted_prices, axis = 0), scale=st.sem(predicted_prices, axis = 0))
predicted_prices_mean = np.mean(predicted_prices, axis = 0)
return predicted_prices_mean, conf_intervals
def is_nan(self, object):
"""
Check if object is null
"""
return object != object