-
Notifications
You must be signed in to change notification settings - Fork 149
/
Discriminator.swift
64 lines (53 loc) · 3.01 KB
/
Discriminator.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
// Copyright 2019 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import TensorFlow
public struct NetD: Layer {
var module: Sequential<Sequential<Conv2D<Float>, Sequential<Function<Tensor<Float>, Tensor<Float>>, Sequential<Conv2D<Float>, Sequential<BatchNorm<Float>, Sequential<Function<Tensor<Float>, Tensor<Float>>, Sequential<Conv2D<Float>, Sequential<BatchNorm<Float>, Function<Tensor<Float>, Tensor<Float>>>>>>>>>, Sequential<ConvLayer, Sequential<BatchNorm<Float>, Sequential<Function<Tensor<Float>, Tensor<Float>>, ConvLayer>>>>
public init(inChannels: Int, lastConvFilters: Int) {
let kw = 4
let module = Sequential {
Conv2D<Float>(filterShape: (kw, kw, inChannels, lastConvFilters),
strides: (2, 2),
padding: .same,
filterInitializer: { Tensor<Float>(randomNormal: $0, standardDeviation: Tensor<Float>(0.02)) })
Function<Tensor<Float>, Tensor<Float>> { leakyRelu($0) }
Conv2D<Float>(filterShape: (kw, kw, lastConvFilters, 2 * lastConvFilters),
strides: (2, 2),
padding: .same,
filterInitializer: { Tensor<Float>(randomNormal: $0, standardDeviation: Tensor<Float>(0.02)) })
BatchNorm<Float>(featureCount: 2 * lastConvFilters)
Function<Tensor<Float>, Tensor<Float>> { leakyRelu($0) }
Conv2D<Float>(filterShape: (kw, kw, 2 * lastConvFilters, 4 * lastConvFilters),
strides: (2, 2),
padding: .same,
filterInitializer: { Tensor<Float>(randomNormal: $0, standardDeviation: Tensor<Float>(0.02)) })
BatchNorm<Float>(featureCount: 4 * lastConvFilters)
Function<Tensor<Float>, Tensor<Float>> { leakyRelu($0) }
}
let module2 = Sequential {
module
ConvLayer(inChannels: 4 * lastConvFilters, outChannels: 8 * lastConvFilters,
kernelSize: 4, stride: 1, padding: 1)
BatchNorm<Float>(featureCount: 8 * lastConvFilters)
Function<Tensor<Float>, Tensor<Float>> { leakyRelu($0) }
ConvLayer(inChannels: 8 * lastConvFilters, outChannels: 1,
kernelSize: 4, stride: 1, padding: 1)
}
self.module = module2
}
@differentiable
public func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
return module(input)
}
}