forked from MarkMoHR/virtual_sketching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_common_test.py
604 lines (497 loc) · 30.4 KB
/
model_common_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import rnn
import tensorflow as tf
from subnet_tf_utils import generative_cnn_encoder, generative_cnn_encoder_deeper, generative_cnn_encoder_deeper13, \
generative_cnn_c3_encoder, generative_cnn_c3_encoder_deeper, generative_cnn_c3_encoder_deeper13, \
generative_cnn_c3_encoder_combine33, generative_cnn_c3_encoder_combine43, \
generative_cnn_c3_encoder_combine53, generative_cnn_c3_encoder_combineFC, \
generative_cnn_c3_encoder_deeper13_attn
class DiffPastingV3(object):
def __init__(self, raster_size):
self.patch_canvas = tf.placeholder(dtype=tf.float32,
shape=(None, None, 1)) # (raster_size, raster_size, 1), [0.0-BG, 1.0-stroke]
self.cursor_pos_a = tf.placeholder(dtype=tf.float32, shape=(2)) # (2), float32, in large size
self.image_size_a = tf.placeholder(dtype=tf.int32, shape=()) # ()
self.window_size_a = tf.placeholder(dtype=tf.float32, shape=()) # (), float32, with grad
self.raster_size_a = float(raster_size)
self.pasted_image = self.image_pasting_sampling_v3()
# (image_size, image_size, 1), [0.0-BG, 1.0-stroke]
def image_pasting_sampling_v3(self):
padding_size = tf.cast(tf.ceil(self.window_size_a / 2.0), tf.int32)
x1y1_a = self.cursor_pos_a - self.window_size_a / 2.0 # (2), float32
x2y2_a = self.cursor_pos_a + self.window_size_a / 2.0 # (2), float32
x1y1_a_floor = tf.floor(x1y1_a) # (2)
x2y2_a_ceil = tf.ceil(x2y2_a) # (2)
cursor_pos_b_oricoord = (x1y1_a_floor + x2y2_a_ceil) / 2.0 # (2)
cursor_pos_b = (cursor_pos_b_oricoord - x1y1_a) / self.window_size_a * self.raster_size_a # (2)
raster_size_b = (x2y2_a_ceil - x1y1_a_floor) # (x, y)
image_size_b = self.raster_size_a
window_size_b = self.raster_size_a * (raster_size_b / self.window_size_a) # (x, y)
cursor_b_x, cursor_b_y = tf.split(cursor_pos_b, 2, axis=-1) # (1)
y1_b = cursor_b_y - (window_size_b[1] - 1.) / 2.
x1_b = cursor_b_x - (window_size_b[0] - 1.) / 2.
y2_b = y1_b + (window_size_b[1] - 1.)
x2_b = x1_b + (window_size_b[0] - 1.)
boxes_b = tf.concat([y1_b, x1_b, y2_b, x2_b], axis=-1) # (4)
boxes_b = boxes_b / tf.cast(image_size_b - 1, tf.float32) # with grad to window_size_a
box_ind_b = tf.ones((1), dtype=tf.int32) # (1)
box_ind_b = tf.cumsum(box_ind_b) - 1
patch_canvas = tf.expand_dims(self.patch_canvas,
axis=0) # (1, raster_size, raster_size, 1), [0.0-BG, 1.0-stroke]
boxes_b = tf.expand_dims(boxes_b, axis=0) # (1, 4)
valid_canvas = tf.image.crop_and_resize(patch_canvas, boxes_b, box_ind_b,
crop_size=[raster_size_b[1], raster_size_b[0]])
valid_canvas = valid_canvas[0] # (raster_size_b, raster_size_b, 1)
pad_up = tf.cast(x1y1_a_floor[1], tf.int32) + padding_size
pad_down = self.image_size_a + padding_size - tf.cast(x2y2_a_ceil[1], tf.int32)
pad_left = tf.cast(x1y1_a_floor[0], tf.int32) + padding_size
pad_right = self.image_size_a + padding_size - tf.cast(x2y2_a_ceil[0], tf.int32)
paddings = [[pad_up, pad_down],
[pad_left, pad_right],
[0, 0]]
pad_img = tf.pad(valid_canvas, paddings=paddings, mode='CONSTANT',
constant_values=0.0) # (H_p, W_p, 1), [0.0-BG, 1.0-stroke]
pasted_image = pad_img[padding_size: padding_size + self.image_size_a,
padding_size: padding_size + self.image_size_a, :]
# (image_size, image_size, 1), [0.0-BG, 1.0-stroke]
return pasted_image
class VirtualSketchingModel(object):
def __init__(self, hps, gpu_mode=True, reuse=False):
"""Initializer for the model.
Args:
hps: a HParams object containing model hyperparameters
gpu_mode: a boolean that when True, uses GPU mode.
reuse: a boolean that when true, attemps to reuse variables.
"""
self.hps = hps
assert hps.model_mode in ['train', 'eval', 'eval_sample', 'sample']
# with tf.variable_scope('SCC', reuse=reuse):
if not gpu_mode:
with tf.device('/cpu:0'):
print('Model using cpu.')
self.build_model()
else:
print('-' * 100)
print('model_mode:', hps.model_mode)
print('Model using gpu.')
self.build_model()
def build_model(self):
"""Define model architecture."""
self.config_model()
initial_state = self.get_decoder_inputs()
self.initial_state = initial_state
## use pred as the prev points
other_params, pen_ras, final_state = self.get_points_and_raster_image(self.image_size)
# other_params: (N * max_seq_len, 6)
# pen_ras: (N * max_seq_len, 2), after softmax
self.other_params = other_params # (N * max_seq_len, 6)
self.pen_ras = pen_ras # (N * max_seq_len, 2), after softmax
self.final_state = final_state
if not self.hps.use_softargmax:
pen_state_soft = pen_ras[:, 1:2] # (N * max_seq_len, 1)
else:
pen_state_soft = self.differentiable_argmax(pen_ras, self.hps.soft_beta) # (N * max_seq_len, 1)
pred_params = tf.concat([pen_state_soft, other_params], axis=1) # (N * max_seq_len, 7)
self.pred_params = tf.reshape(pred_params, shape=[-1, self.hps.max_seq_len, 7]) # (N, max_seq_len, 7)
# pred_params: (N, max_seq_len, 7)
def config_model(self):
if self.hps.model_mode == 'train':
self.global_step = tf.Variable(0, name='global_step', trainable=False)
if self.hps.dec_model == 'lstm':
dec_cell_fn = rnn.LSTMCell
elif self.hps.dec_model == 'layer_norm':
dec_cell_fn = rnn.LayerNormLSTMCell
elif self.hps.dec_model == 'hyper':
dec_cell_fn = rnn.HyperLSTMCell
else:
assert False, 'please choose a respectable cell'
use_recurrent_dropout = self.hps.use_recurrent_dropout
use_input_dropout = self.hps.use_input_dropout
use_output_dropout = self.hps.use_output_dropout
dec_cell = dec_cell_fn(
self.hps.dec_rnn_size,
use_recurrent_dropout=use_recurrent_dropout,
dropout_keep_prob=self.hps.recurrent_dropout_prob)
# dropout:
# print('Input dropout mode = %s.' % use_input_dropout)
# print('Output dropout mode = %s.' % use_output_dropout)
# print('Recurrent dropout mode = %s.' % use_recurrent_dropout)
if use_input_dropout:
print('Dropout to input w/ keep_prob = %4.4f.' % self.hps.input_dropout_prob)
dec_cell = tf.contrib.rnn.DropoutWrapper(
dec_cell, input_keep_prob=self.hps.input_dropout_prob)
if use_output_dropout:
print('Dropout to output w/ keep_prob = %4.4f.' % self.hps.output_dropout_prob)
dec_cell = tf.contrib.rnn.DropoutWrapper(
dec_cell, output_keep_prob=self.hps.output_dropout_prob)
self.dec_cell = dec_cell
self.input_photo = tf.placeholder(dtype=tf.float32,
shape=[self.hps.batch_size, None, None, self.hps.input_channel]) # [0.0-stroke, 1.0-BG]
self.init_cursor = tf.placeholder(
dtype=tf.float32,
shape=[self.hps.batch_size, 1, 2]) # (N, 1, 2), in size [0.0, 1.0)
self.init_width = tf.placeholder(
dtype=tf.float32,
shape=[self.hps.batch_size]) # (1), in [0.0, 1.0]
self.init_scaling = tf.placeholder(
dtype=tf.float32,
shape=[self.hps.batch_size]) # (N), in [0.0, 1.0]
self.init_window_size = tf.placeholder(
dtype=tf.float32,
shape=[self.hps.batch_size]) # (N)
self.image_size = tf.placeholder(dtype=tf.int32, shape=()) # ()
###########################
def normalize_image_m1to1(self, in_img_0to1):
norm_img_m1to1 = tf.multiply(in_img_0to1, 2.0)
norm_img_m1to1 = tf.subtract(norm_img_m1to1, 1.0)
return norm_img_m1to1
def add_coords(self, input_tensor):
batch_size_tensor = tf.shape(input_tensor)[0] # get N size
xx_ones = tf.ones([batch_size_tensor, self.hps.raster_size], dtype=tf.int32) # e.g. (N, raster_size)
xx_ones = tf.expand_dims(xx_ones, -1) # e.g. (N, raster_size, 1)
xx_range = tf.tile(tf.expand_dims(tf.range(self.hps.raster_size), 0),
[batch_size_tensor, 1]) # e.g. (N, raster_size)
xx_range = tf.expand_dims(xx_range, 1) # e.g. (N, 1, raster_size)
xx_channel = tf.matmul(xx_ones, xx_range) # e.g. (N, raster_size, raster_size)
xx_channel = tf.expand_dims(xx_channel, -1) # e.g. (N, raster_size, raster_size, 1)
yy_ones = tf.ones([batch_size_tensor, self.hps.raster_size], dtype=tf.int32) # e.g. (N, raster_size)
yy_ones = tf.expand_dims(yy_ones, 1) # e.g. (N, 1, raster_size)
yy_range = tf.tile(tf.expand_dims(tf.range(self.hps.raster_size), 0),
[batch_size_tensor, 1]) # (N, raster_size)
yy_range = tf.expand_dims(yy_range, -1) # e.g. (N, raster_size, 1)
yy_channel = tf.matmul(yy_range, yy_ones) # e.g. (N, raster_size, raster_size)
yy_channel = tf.expand_dims(yy_channel, -1) # e.g. (N, raster_size, raster_size, 1)
xx_channel = tf.cast(xx_channel, 'float32') / (self.hps.raster_size - 1)
yy_channel = tf.cast(yy_channel, 'float32') / (self.hps.raster_size - 1)
# xx_channel = xx_channel * 2 - 1 # [-1, 1]
# yy_channel = yy_channel * 2 - 1
ret = tf.concat([
input_tensor,
xx_channel,
yy_channel,
], axis=-1) # e.g. (N, raster_size, raster_size, 4)
return ret
def build_combined_encoder(self, patch_canvas, patch_photo, entire_canvas, entire_photo, cursor_pos,
image_size, window_size):
"""
:param patch_canvas: (N, raster_size, raster_size, 1), [-1.0-stroke, 1.0-BG]
:param patch_photo: (N, raster_size, raster_size, 1/3), [-1.0-stroke, 1.0-BG]
:param entire_canvas: (N, image_size, image_size, 1), [0.0-stroke, 1.0-BG]
:param entire_photo: (N, image_size, image_size, 1/3), [0.0-stroke, 1.0-BG]
:param cursor_pos: (N, 1, 2), in size [0.0, 1.0)
:param window_size: (N, 1, 1), float, in large size
:return:
"""
if self.hps.resize_method == 'BILINEAR':
resize_method = tf.image.ResizeMethod.BILINEAR
elif self.hps.resize_method == 'NEAREST_NEIGHBOR':
resize_method = tf.image.ResizeMethod.NEAREST_NEIGHBOR
elif self.hps.resize_method == 'BICUBIC':
resize_method = tf.image.ResizeMethod.BICUBIC
elif self.hps.resize_method == 'AREA':
resize_method = tf.image.ResizeMethod.AREA
else:
raise Exception('unknown resize_method', self.hps.resize_method)
patch_photo = tf.stop_gradient(patch_photo)
patch_canvas = tf.stop_gradient(patch_canvas)
cursor_pos = tf.stop_gradient(cursor_pos)
window_size = tf.stop_gradient(window_size)
entire_photo_small = tf.stop_gradient(tf.image.resize_images(entire_photo,
(self.hps.raster_size, self.hps.raster_size),
method=resize_method))
entire_canvas_small = tf.stop_gradient(tf.image.resize_images(entire_canvas,
(self.hps.raster_size, self.hps.raster_size),
method=resize_method))
entire_photo_small = self.normalize_image_m1to1(entire_photo_small) # [-1.0-stroke, 1.0-BG]
entire_canvas_small = self.normalize_image_m1to1(entire_canvas_small) # [-1.0-stroke, 1.0-BG]
if self.hps.encode_cursor_type == 'value':
cursor_pos_norm = tf.expand_dims(cursor_pos, axis=1) # (N, 1, 1, 2)
cursor_pos_norm = tf.tile(cursor_pos_norm, [1, self.hps.raster_size, self.hps.raster_size, 1])
cursor_info = cursor_pos_norm
else:
raise Exception('Unknown encode_cursor_type', self.hps.encode_cursor_type)
batch_input_combined = tf.concat([patch_photo, patch_canvas, entire_photo_small, entire_canvas_small, cursor_info],
axis=-1) # [N, raster_size, raster_size, 6/10]
batch_input_local = tf.concat([patch_photo, patch_canvas], axis=-1) # [N, raster_size, raster_size, 2/4]
batch_input_global = tf.concat([entire_photo_small, entire_canvas_small, cursor_info],
axis=-1) # [N, raster_size, raster_size, 4/6]
if self.hps.model_mode == 'train':
is_training = True
dropout_keep_prob = self.hps.pix_drop_kp
else:
is_training = False
dropout_keep_prob = 1.0
if self.hps.add_coordconv:
batch_input_combined = self.add_coords(batch_input_combined) # (N, in_H, in_W, in_dim + 2)
batch_input_local = self.add_coords(batch_input_local) # (N, in_H, in_W, in_dim + 2)
batch_input_global = self.add_coords(batch_input_global) # (N, in_H, in_W, in_dim + 2)
if 'combine' in self.hps.encoder_type:
if self.hps.encoder_type == 'combine33':
image_embedding, _ = generative_cnn_c3_encoder_combine33(batch_input_local, batch_input_global,
is_training, dropout_keep_prob) # (N, 128)
elif self.hps.encoder_type == 'combine43':
image_embedding, _ = generative_cnn_c3_encoder_combine43(batch_input_local, batch_input_global,
is_training, dropout_keep_prob) # (N, 128)
elif self.hps.encoder_type == 'combine53':
image_embedding, _ = generative_cnn_c3_encoder_combine53(batch_input_local, batch_input_global,
is_training, dropout_keep_prob) # (N, 128)
elif self.hps.encoder_type == 'combineFC':
image_embedding, _ = generative_cnn_c3_encoder_combineFC(batch_input_local, batch_input_global,
is_training, dropout_keep_prob) # (N, 256)
else:
raise Exception('Unknown encoder_type', self.hps.encoder_type)
else:
with tf.variable_scope('Combined_Encoder', reuse=tf.AUTO_REUSE):
if self.hps.encoder_type == 'conv10':
image_embedding, _ = generative_cnn_encoder(batch_input_combined, is_training, dropout_keep_prob) # (N, 128)
elif self.hps.encoder_type == 'conv10_deep':
image_embedding, _ = generative_cnn_encoder_deeper(batch_input_combined, is_training, dropout_keep_prob) # (N, 512)
elif self.hps.encoder_type == 'conv13':
image_embedding, _ = generative_cnn_encoder_deeper13(batch_input_combined, is_training, dropout_keep_prob) # (N, 128)
elif self.hps.encoder_type == 'conv10_c3':
image_embedding, _ = generative_cnn_c3_encoder(batch_input_combined, is_training, dropout_keep_prob) # (N, 128)
elif self.hps.encoder_type == 'conv10_deep_c3':
image_embedding, _ = generative_cnn_c3_encoder_deeper(batch_input_combined, is_training, dropout_keep_prob) # (N, 512)
elif self.hps.encoder_type == 'conv13_c3':
image_embedding, _ = generative_cnn_c3_encoder_deeper13(batch_input_combined, is_training, dropout_keep_prob) # (N, 128)
elif self.hps.encoder_type == 'conv13_c3_attn':
image_embedding, _ = generative_cnn_c3_encoder_deeper13_attn(batch_input_combined, is_training, dropout_keep_prob) # (N, 128)
else:
raise Exception('Unknown encoder_type', self.hps.encoder_type)
return image_embedding
def build_seq_decoder(self, dec_cell, actual_input_x, initial_state):
rnn_output, last_state = self.rnn_decoder(dec_cell, initial_state, actual_input_x)
rnn_output_flat = tf.reshape(rnn_output, [-1, self.hps.dec_rnn_size])
pen_n_out = 2
params_n_out = 6
with tf.variable_scope('DEC_RNN_out_pen', reuse=tf.AUTO_REUSE):
output_w_pen = tf.get_variable('output_w', [self.hps.dec_rnn_size, pen_n_out])
output_b_pen = tf.get_variable('output_b', [pen_n_out], initializer=tf.constant_initializer(0.0))
output_pen = tf.nn.xw_plus_b(rnn_output_flat, output_w_pen, output_b_pen) # (N, pen_n_out)
with tf.variable_scope('DEC_RNN_out_params', reuse=tf.AUTO_REUSE):
output_w_params = tf.get_variable('output_w', [self.hps.dec_rnn_size, params_n_out])
output_b_params = tf.get_variable('output_b', [params_n_out], initializer=tf.constant_initializer(0.0))
output_params = tf.nn.xw_plus_b(rnn_output_flat, output_w_params, output_b_params) # (N, params_n_out)
output = tf.concat([output_pen, output_params], axis=1) # (N, n_out)
return output, last_state
def get_mixture_coef(self, outputs):
z = outputs
z_pen_logits = z[:, 0:2] # (N, 2), pen states
z_other_params_logits = z[:, 2:] # (N, 6)
z_pen = tf.nn.softmax(z_pen_logits) # (N, 2)
if self.hps.position_format == 'abs':
x1y1 = tf.nn.sigmoid(z_other_params_logits[:, 0:2]) # (N, 2)
x2y2 = tf.tanh(z_other_params_logits[:, 2:4]) # (N, 2)
widths = tf.nn.sigmoid(z_other_params_logits[:, 4:5]) # (N, 1)
widths = tf.add(tf.multiply(widths, 1.0 - self.hps.min_width), self.hps.min_width)
scaling = tf.nn.sigmoid(z_other_params_logits[:, 5:6]) * self.hps.max_scaling # (N, 1), [0.0, max_scaling]
# scaling = tf.add(tf.multiply(scaling, (self.hps.max_scaling - self.hps.min_scaling) / self.hps.max_scaling),
# self.hps.min_scaling)
z_other_params = tf.concat([x1y1, x2y2, widths, scaling], axis=-1) # (N, 6)
else: # "rel"
raise Exception('Unknown position_format', self.hps.position_format)
r = [z_other_params, z_pen]
return r
###########################
def get_decoder_inputs(self):
initial_state = self.dec_cell.zero_state(batch_size=self.hps.batch_size, dtype=tf.float32)
return initial_state
def rnn_decoder(self, dec_cell, initial_state, actual_input_x):
with tf.variable_scope("RNN_DEC", reuse=tf.AUTO_REUSE):
output, last_state = tf.nn.dynamic_rnn(
dec_cell,
actual_input_x,
initial_state=initial_state,
time_major=False,
swap_memory=True,
dtype=tf.float32)
return output, last_state
###########################
def image_padding(self, ori_image, window_size, pad_value):
"""
Pad with (bg)
:param ori_image:
:return:
"""
paddings = [[0, 0],
[window_size // 2, window_size // 2],
[window_size // 2, window_size // 2],
[0, 0]]
pad_img = tf.pad(ori_image, paddings=paddings, mode='CONSTANT', constant_values=pad_value) # (N, H_p, W_p, k)
return pad_img
def image_cropping_fn(self, fn_inputs):
"""
crop the patch
:return:
"""
index_offset = self.hps.input_channel - 1
input_image = fn_inputs[:, :, 0:2 + index_offset] # (image_size, image_size, -), [0.0-BG, 1.0-stroke]
cursor_pos = fn_inputs[0, 0, 2 + index_offset:4 + index_offset] # (2), in [0.0, 1.0)
image_size = fn_inputs[0, 0, 4 + index_offset] # (), float32
window_size = tf.cast(fn_inputs[0, 0, 5 + index_offset], tf.int32) # ()
input_img_reshape = tf.expand_dims(input_image, axis=0)
pad_img = self.image_padding(input_img_reshape, window_size, pad_value=0.0)
cursor_pos = tf.cast(tf.round(tf.multiply(cursor_pos, image_size)), dtype=tf.int32)
x0, x1 = cursor_pos[0], cursor_pos[0] + window_size # ()
y0, y1 = cursor_pos[1], cursor_pos[1] + window_size # ()
patch_image = pad_img[:, y0:y1, x0:x1, :] # (1, window_size, window_size, 2/4)
# resize to raster_size
patch_image_scaled = tf.image.resize_images(patch_image, (self.hps.raster_size, self.hps.raster_size),
method=tf.image.ResizeMethod.AREA)
patch_image_scaled = tf.squeeze(patch_image_scaled, axis=0)
# patch_canvas_scaled: (raster_size, raster_size, 2/4), [0.0-BG, 1.0-stroke]
return patch_image_scaled
def image_cropping(self, cursor_position, input_img, image_size, window_sizes):
"""
:param cursor_position: (N, 1, 2), float type, in size [0.0, 1.0)
:param input_img: (N, image_size, image_size, 2/4), [0.0-BG, 1.0-stroke]
:param window_sizes: (N, 1, 1), float32, with grad
"""
input_img_ = input_img
window_sizes_non_grad = tf.stop_gradient(tf.round(window_sizes)) # (N, 1, 1), no grad
cursor_position_ = tf.reshape(cursor_position, (-1, 1, 1, 2)) # (N, 1, 1, 2)
cursor_position_ = tf.tile(cursor_position_, [1, image_size, image_size, 1]) # (N, image_size, image_size, 2)
image_size_ = tf.reshape(tf.cast(image_size, tf.float32), (1, 1, 1, 1)) # (1, 1, 1, 1)
image_size_ = tf.tile(image_size_, [self.hps.batch_size, image_size, image_size, 1])
window_sizes_ = tf.reshape(window_sizes_non_grad, (-1, 1, 1, 1)) # (N, 1, 1, 1)
window_sizes_ = tf.tile(window_sizes_, [1, image_size, image_size, 1]) # (N, image_size, image_size, 1)
fn_inputs = tf.concat([input_img_, cursor_position_, image_size_, window_sizes_],
axis=-1) # (N, image_size, image_size, 2/4 + 4)
curr_patch_imgs = tf.map_fn(self.image_cropping_fn, fn_inputs, parallel_iterations=32) # (N, raster_size, raster_size, -)
return curr_patch_imgs
def image_cropping_v3(self, cursor_position, input_img, image_size, window_sizes):
"""
:param cursor_position: (N, 1, 2), float type, in size [0.0, 1.0)
:param input_img: (N, image_size, image_size, k), [0.0-BG, 1.0-stroke]
:param window_sizes: (N, 1, 1), float32, with grad
"""
window_sizes_non_grad = tf.stop_gradient(window_sizes) # (N, 1, 1), no grad
cursor_pos = tf.multiply(cursor_position, tf.cast(image_size, tf.float32))
cursor_x, cursor_y = tf.split(cursor_pos, 2, axis=-1) # (N, 1, 1)
y1 = cursor_y - (window_sizes_non_grad - 1.0) / 2
x1 = cursor_x - (window_sizes_non_grad - 1.0) / 2
y2 = y1 + (window_sizes_non_grad - 1.0)
x2 = x1 + (window_sizes_non_grad - 1.0)
boxes = tf.concat([y1, x1, y2, x2], axis=-1) # (N, 1, 4)
boxes = tf.squeeze(boxes, axis=1) # (N, 4)
boxes = boxes / tf.cast(image_size - 1, tf.float32)
box_ind = tf.ones_like(cursor_x)[:, 0, 0] # (N)
box_ind = tf.cast(box_ind, dtype=tf.int32)
box_ind = tf.cumsum(box_ind) - 1
curr_patch_imgs = tf.image.crop_and_resize(input_img, boxes, box_ind,
crop_size=[self.hps.raster_size, self.hps.raster_size])
# (N, raster_size, raster_size, k), [0.0-BG, 1.0-stroke]
return curr_patch_imgs
def get_points_and_raster_image(self, image_size):
## generate the other_params and pen_ras and raster image for raster loss
prev_state = self.initial_state # (N, dec_rnn_size * 3)
prev_width = self.init_width # (N)
prev_width = tf.expand_dims(tf.expand_dims(prev_width, axis=-1), axis=-1) # (N, 1, 1)
prev_scaling = self.init_scaling # (N)
prev_scaling = tf.reshape(prev_scaling, (-1, 1, 1)) # (N, 1, 1)
prev_window_size = self.init_window_size # (N)
prev_window_size = tf.reshape(prev_window_size, (-1, 1, 1)) # (N, 1, 1)
cursor_position_temp = self.init_cursor
self.cursor_position = cursor_position_temp # (N, 1, 2), in size [0.0, 1.0)
cursor_position_loop = self.cursor_position
other_params_list = []
pen_ras_list = []
curr_canvas_soft = tf.zeros_like(self.input_photo[:, :, :, 0]) # (N, image_size, image_size), [0.0-BG, 1.0-stroke]
curr_canvas_hard = tf.zeros_like(curr_canvas_soft) # [0.0-BG, 1.0-stroke]
#### sampling part - start ####
self.curr_canvas_hard = curr_canvas_hard
if self.hps.cropping_type == 'v3':
cropping_func = self.image_cropping_v3
# elif self.hps.cropping_type == 'v2':
# cropping_func = self.image_cropping
else:
raise Exception('Unknown cropping_type', self.hps.cropping_type)
for time_i in range(self.hps.max_seq_len):
cursor_position_non_grad = tf.stop_gradient(cursor_position_loop) # (N, 1, 2), in size [0.0, 1.0)
curr_window_size = tf.multiply(prev_scaling, tf.stop_gradient(prev_window_size)) # float, with grad
curr_window_size = tf.maximum(curr_window_size, tf.cast(self.hps.min_window_size, tf.float32))
curr_window_size = tf.minimum(curr_window_size, tf.cast(image_size, tf.float32))
## patch-level encoding
# Here, we make the gradients from canvas_z to curr_canvas_hard be None to avoid recurrent gradient propagation.
curr_canvas_hard_non_grad = tf.stop_gradient(self.curr_canvas_hard)
curr_canvas_hard_non_grad = tf.expand_dims(curr_canvas_hard_non_grad, axis=-1)
# input_photo: (N, image_size, image_size, 1/3), [0.0-stroke, 1.0-BG]
crop_inputs = tf.concat([1.0 - self.input_photo, curr_canvas_hard_non_grad], axis=-1) # (N, H_p, W_p, 1+1)
cropped_outputs = cropping_func(cursor_position_non_grad, crop_inputs, image_size, curr_window_size)
index_offset = self.hps.input_channel - 1
curr_patch_inputs = cropped_outputs[:, :, :, 0:1 + index_offset] # [0.0-BG, 1.0-stroke]
curr_patch_canvas_hard_non_grad = cropped_outputs[:, :, :, 1 + index_offset:2 + index_offset]
# (N, raster_size, raster_size, 1/3), [0.0-BG, 1.0-stroke]
curr_patch_inputs = 1.0 - curr_patch_inputs # [0.0-stroke, 1.0-BG]
curr_patch_inputs = self.normalize_image_m1to1(curr_patch_inputs)
# (N, raster_size, raster_size, 1/3), [-1.0-stroke, 1.0-BG]
# Normalizing image
curr_patch_canvas_hard_non_grad = 1.0 - curr_patch_canvas_hard_non_grad # [0.0-stroke, 1.0-BG]
curr_patch_canvas_hard_non_grad = self.normalize_image_m1to1(curr_patch_canvas_hard_non_grad) # [-1.0-stroke, 1.0-BG]
## image-level encoding
combined_z = self.build_combined_encoder(
curr_patch_canvas_hard_non_grad,
curr_patch_inputs,
1.0 - curr_canvas_hard_non_grad,
self.input_photo,
cursor_position_non_grad,
image_size,
curr_window_size) # (N, z_size)
combined_z = tf.expand_dims(combined_z, axis=1) # (N, 1, z_size)
curr_window_size_top_side_norm_non_grad = \
tf.stop_gradient(curr_window_size / tf.cast(image_size, tf.float32))
curr_window_size_bottom_side_norm_non_grad = \
tf.stop_gradient(curr_window_size / tf.cast(self.hps.min_window_size, tf.float32))
if not self.hps.concat_win_size:
combined_z = tf.concat([tf.stop_gradient(prev_width), combined_z], 2) # (N, 1, 2+z_size)
else:
combined_z = tf.concat([tf.stop_gradient(prev_width),
curr_window_size_top_side_norm_non_grad,
curr_window_size_bottom_side_norm_non_grad,
combined_z],
2) # (N, 1, 2+z_size)
if self.hps.concat_cursor:
prev_input_x = tf.concat([cursor_position_non_grad, combined_z], 2) # (N, 1, 2+2+z_size)
else:
prev_input_x = combined_z # (N, 1, 2+z_size)
h_output, next_state = self.build_seq_decoder(self.dec_cell, prev_input_x, prev_state)
# h_output: (N * 1, n_out), next_state: (N, dec_rnn_size * 3)
[o_other_params, o_pen_ras] = self.get_mixture_coef(h_output)
# o_other_params: (N * 1, 6)
# o_pen_ras: (N * 1, 2), after softmax
o_other_params = tf.reshape(o_other_params, [-1, 1, 6]) # (N, 1, 6)
o_pen_ras_raw = tf.reshape(o_pen_ras, [-1, 1, 2]) # (N, 1, 2)
other_params_list.append(o_other_params)
pen_ras_list.append(o_pen_ras_raw)
#### sampling part - end ####
prev_state = next_state
other_params_ = tf.reshape(tf.concat(other_params_list, axis=1), [-1, 6]) # (N * max_seq_len, 6)
pen_ras_ = tf.reshape(tf.concat(pen_ras_list, axis=1), [-1, 2]) # (N * max_seq_len, 2)
return other_params_, pen_ras_, prev_state
def differentiable_argmax(self, input_pen, soft_beta):
"""
Differentiable argmax trick.
:param input_pen: (N, n_class)
:return: pen_state: (N, 1)
"""
def sign_onehot(x):
"""
:param x: (N, n_class)
:return: (N, n_class)
"""
y = tf.sign(tf.reduce_max(x, axis=-1, keepdims=True) - x)
y = (y - 1) * (-1)
return y
def softargmax(x, beta=1e2):
"""
:param x: (N, n_class)
:param beta: 1e10 is the best. 1e2 is acceptable.
:return: (N)
"""
x_range = tf.cumsum(tf.ones_like(x), axis=1) # (N, 2)
return tf.reduce_sum(tf.nn.softmax(x * beta) * x_range, axis=1) - 1
## Better to use softargmax(beta=1e2). The sign_onehot's gradient is close to zero.
# pen_onehot = sign_onehot(input_pen) # one-hot form, (N * max_seq_len, 2)
# pen_state = pen_onehot[:, 1:2] # (N * max_seq_len, 1)
pen_state = softargmax(input_pen, soft_beta)
pen_state = tf.expand_dims(pen_state, axis=1) # (N * max_seq_len, 1)
return pen_state