-
Notifications
You must be signed in to change notification settings - Fork 53
/
memory.py
101 lines (82 loc) · 3.3 KB
/
memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
from typing import List, Iterable, Any
from dotenv import load_dotenv
from langchain.memory import ChatMessageHistory
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.documents import Document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.retrievers import BaseRetriever
from langchain_core.runnables.history import RunnableWithMessageHistory
from basic_chain import get_model
from rag_chain import make_rag_chain
def create_memory_chain(llm, base_chain, chat_memory):
contextualize_q_system_prompt = """Given a chat history and the latest user question \
which might reference context in the chat history, formulate a standalone question \
which can be understood without the chat history. Do NOT answer the question, \
just reformulate it if needed and otherwise return it as is."""
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{question}"),
]
)
runnable = contextualize_q_prompt | llm | base_chain
def get_session_history(session_id: str) -> BaseChatMessageHistory:
return chat_memory
with_message_history = RunnableWithMessageHistory(
runnable,
get_session_history,
input_messages_key="question",
history_messages_key="chat_history",
)
return with_message_history
class SimpleTextRetriever(BaseRetriever):
docs: List[Document]
"""Documents."""
@classmethod
def from_texts(
cls,
texts: Iterable[str],
**kwargs: Any,
):
docs = [Document(page_content=t) for t in texts]
return cls(docs=docs, **kwargs)
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
return self.docs
def main():
load_dotenv()
model = get_model("ChatGPT")
chat_memory = ChatMessageHistory()
system_prompt = "You are a helpful AI assistant for busy professionals trying to improve their health."
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{question}"),
]
)
text_path = "examples/grocery.md"
text = open(text_path, "r").read()
retriever = SimpleTextRetriever.from_texts([text])
rag_chain = make_rag_chain(model, retriever, rag_prompt=None)
chain = create_memory_chain(model, rag_chain, chat_memory) | StrOutputParser()
queries = [
"What do I need to get from the grocery store besides milk?",
"Which of these items can I find at a farmer's market?",
]
for query in queries:
print(f"\nQuestion: {query}")
response = chain.invoke(
{"question": query},
config={"configurable": {"session_id": "foo"}}
)
print(f"Answer: {response}")
if __name__ == "__main__":
# this is to quite parallel tokenizers warning.
os.environ["TOKENIZERS_PARALLELISM"] = "false"
main()