-
Notifications
You must be signed in to change notification settings - Fork 8
/
listz.c
611 lines (522 loc) · 15 KB
/
listz.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
/* Arithmetic on lists of residues modulo n.
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2012
Paul Zimmermann and Alexander Kruppa.
This file is part of the ECM Library.
The ECM Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The ECM Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the ECM Library; see the file COPYING.LIB. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include <stdlib.h>
#include "ecm-impl.h"
#ifdef DEBUG
#define ASSERTD(x) assert(x)
#else
#define ASSERTD(x)
#endif
extern unsigned int Fermat;
/* returns a bound on the auxiliary memory needed by list_mult_n */
int
list_mul_mem (unsigned int len)
{
return 2 * len;
}
/* creates a list of n integers, return NULL if error */
listz_t
init_list (unsigned int n)
{
listz_t p;
unsigned int i;
p = (mpz_t*) malloc (n * sizeof (mpz_t));
if (p == NULL)
return NULL;
for (i = 0; i < n; i++)
mpz_init (p[i]);
return p;
}
/* creates a list of n integers, return NULL if error. Allocates each
mpz_t to the size of N bits */
listz_t
init_list2 (unsigned int n, unsigned int N)
{
listz_t p;
unsigned int i;
p = (mpz_t*) malloc (n * sizeof (mpz_t));
if (p == NULL)
return NULL;
for (i = 0; i < n; i++)
mpz_init2 (p[i], N);
return p;
}
/* clears a list of n integers */
void
clear_list (listz_t p, unsigned int n)
{
unsigned int i;
if (p == NULL)
return;
for (i = 0; i < n; i++)
mpz_clear (p[i]);
free (p);
}
#ifdef DEBUG
/* prints a list of n coefficients as a polynomial */
void
print_list (listz_t p, unsigned int n)
{
unsigned int i;
for (i = 0; i < n; i++)
{
if (i > 0 && mpz_cmp_ui (p[i], 0) >= 0)
fprintf (ECM_STDOUT, "+");
mpz_out_str (ECM_STDOUT, 10, p[i]);
fprintf (ECM_STDOUT, "*x^%u", i);
}
fprintf (ECM_STDOUT, "\n");
}
static int
list_check (listz_t a, unsigned int l, mpz_t n)
{
unsigned int i;
for (i = 0; i < l; i++)
if (mpz_cmp_ui (a[i], 0) < 0 || mpz_cmp (n, a[i]) <= 0)
{
fprintf (ECM_STDOUT, "l=%u i=%u\n", l, i);
mpz_out_str (ECM_STDOUT, 10, a[i]);
fprintf (ECM_STDOUT, "\n");
return 0;
}
return 1;
}
#endif /* DEBUG */
/* Read all entries in list from stream.
Return 0 on success, ECM_ERROR on error */
int
list_inp_raw (listz_t a, FILE *f, unsigned int n)
{
unsigned int i;
for (i = 0; i < n; i++)
if (mpz_inp_raw (a[i], f) == 0)
return ECM_ERROR;
return 0;
}
/* Write all entries in list to stream.
Return 0 on success, ECM_ERROR on error */
int
list_out_raw (FILE *f, listz_t a, unsigned int n)
{
unsigned int i;
for (i = 0; i < n; i++)
if (mpz_out_raw (f, a[i]) == 0)
return ECM_ERROR;
return 0;
}
/* p <- q */
void
list_set (listz_t p, listz_t q, unsigned int n)
{
unsigned int i;
for (i = 0; i < n; i++)
mpz_set (p[i], q[i]);
}
/* p[0] <-> p[n-1], p[1] <-> p[n-2], ... */
void
list_revert (listz_t p, unsigned int n)
{
unsigned int i;
for (i = 0; i < n - 1 - i; i++)
mpz_swap (p[i], p[n - 1 - i]);
}
void
list_swap (listz_t p, listz_t q, unsigned int n)
{
unsigned int i;
for (i = 0; i < n; i++)
mpz_swap (p[i], q[i]);
}
/* p <- -q, keeps residues normalized */
void
list_neg (listz_t p, listz_t q, unsigned int l, mpz_t n)
{
unsigned int i;
for (i = 0; i < l; i++)
{
if (mpz_sgn (q[i]))
mpz_sub (p[i], n, q[i]);
else
mpz_set_ui (p[i], 0);
}
}
/* p <- q modulo mod */
void
list_mod (listz_t p, listz_t q, unsigned int n, mpz_t mod)
{
unsigned int i;
for (i = 0; i < n; i++)
mpz_mod (p[i], q[i], mod);
}
/* p <- q + r */
void
list_add (listz_t p, listz_t q, listz_t r, unsigned int l)
{
unsigned int i;
for (i = 0; i < l; i++)
mpz_add (p[i], q[i], r[i]);
}
/* p <- q - r */
void
list_sub (listz_t p, listz_t q, listz_t r, unsigned int l)
{
unsigned int i;
for (i = 0; i < l; i++)
mpz_sub (p[i], q[i], r[i]);
}
/* Multiply up the integers in l, modulo n. Each entry becomes the
product (mod n) of itself and all previous entries */
void
list_mulup (listz_t l, unsigned int k, mpz_t n, mpz_t t)
{
unsigned int i;
for (i = 1; i < k; i++)
{
mpz_mul (t, l[i - 1], l[i]);
mpz_mod (l[i], t, n);
}
}
/* p <- 0 */
void
list_zero (listz_t p, unsigned int n)
{
unsigned int i;
for (i = 0; i < n; i++)
mpz_set_ui (p[i], 0);
}
/* puts in a[K-1]..a[2K-2] the K high terms of the product
of b[0..K-1] and c[0..K-1].
Assumes K >= 1, and a[0..2K-2] exist.
Needs space for list_mul_mem(K) in t.
*/
void
list_mul_high (listz_t a, listz_t b, listz_t c, unsigned int K)
{
list_mult_n (a, b, c, K);
}
/* multiplies b[0]+...+b[k-1]*x^(k-1)+x^k by c[0]+...+c[l-1]*x^(l-1)+x^l
and puts the results in a[0]+...+a[k+l-1]*x^(k+l-1)
[the leading monomial x^(k+l) is implicit].
If monic is 0, don't consider x^k in b (and x^l in c).
Assumes k = l or k = l+1.
The auxiliary array t contains at least list_mul_mem(l) entries.
a and t should not overlap.
*/
void
list_mul (listz_t a, listz_t b, unsigned int k,
listz_t c, unsigned int l, int monic, listz_t t)
{
unsigned int i, po2;
ASSERT(k == l || k == l + 1);
for (po2 = l; (po2 & 1) == 0; po2 >>= 1);
po2 = (po2 == 1);
#ifdef DEBUG
if (Fermat && !(po2 && l == k))
fprintf (ECM_STDOUT, "list_mul: Fermat number, but poly lengths %d and %d\n", k, l);
#endif
if (po2 && Fermat)
{
if (monic && l == k)
{
F_mul (a, b, c, l, MONIC, Fermat, t);
monic = 0;
}
else
F_mul (a, b, c, l, DEFAULT, Fermat, t);
}
else
list_mult_n (a, b, c, l); /* set a[0]...a[2l-2] */
if (k > l) /* multiply b[l]*x^l by c[0]+...+c[l-1]*x^(l-1) */
{
for (i = 0; i < l - 1; i++)
mpz_addmul (a[l+i], b[l], c[i]);
mpz_mul (a[2*l-1], b[l], c[l-1]);
}
/* deal with x^k and x^l */
if (monic)
{
mpz_set_ui (a[k + l - 1], 0);
/* Single pass over a[] */
/* a += b * x^l + c * x^k, so a[i] += b[i-l]; a[i] += c[i-k]
if 0 <= i-l < k or 0 <= i-k < l, respectively */
if (k > l) /* case k = l+1 */
mpz_add (a[l], a[l], b[0]);
for (i = k; i < k + l; i++)
{
mpz_add (a[i], a[i], b[i-l]); /* i-l < k */
mpz_add (a[i], a[i], c[i-k]); /* i-k < l */
}
}
}
/*
Multiplies b[0..k-1] by c[0..k-1], stores the result in a[0..2k-2],
and stores the reduced product in a2[0..2k-2].
(Here, there is no implicit monic leading monomial.)
Requires at least list_mul_mem(k) cells in t.
*/
void
list_mulmod (listz_t a2, listz_t a, listz_t b, listz_t c, unsigned int k,
listz_t t, mpz_t n)
{
int i;
/* keep the semicolon on a separate line to silence a warning with clang */
for (i = k; (i & 1) == 0; i >>= 1)
;
ASSERTD(list_check(b,k,n));
ASSERTD(list_check(c,k,n));
if (i == 1 && Fermat)
F_mul (a, b, c, k, DEFAULT, Fermat, t);
else
list_mult_n (a, b, c, k); /* set a[0]...a[2l-2] */
list_mod (a2, a, 2 * k - 1, n);
}
/* puts in G[0]..G[k-1] the coefficients from (x+a[0])...(x+a[k-1])
Warning: doesn't fill the coefficient 1 of G[k], which is implicit.
Needs k + list_mul_mem(k/2) cells in T.
G == a is allowed. T must not overlap with anything else.
*/
void
PolyFromRoots (listz_t G, listz_t a, unsigned int k, listz_t T, mpz_t n)
{
unsigned int l, m;
ASSERT (T != G && T != a);
ASSERT (k >= 1);
if (k == 1)
{
/* we consider x + a[0], which mean we consider negated roots */
mpz_mod (G[0], a[0], n);
return;
}
m = k / 2; /* m >= 1 */
l = k - m; /* l >= 1 */
PolyFromRoots (G, a, l, T, n);
PolyFromRoots (G + l, a + l, m, T, n);
list_mul (T, G, l, G + l, m, 1, T + k);
list_mod (G, T, k, n);
}
/* puts in G[0]..G[k-1] the coefficients from (x+a[0])...(x+a[k-1])
Warning: doesn't fill the coefficient 1 of G[k], which is implicit.
Needs k + list_mul_mem(k/2) cells in T.
The product tree is stored in:
G[0..k-1] (degree k)
Tree[0][0..k-1] (degree k/2)
Tree[1][0..k-1] (degree k/4), ...,
Tree[lgk-1][0..k-1] (degree 1)
(then we should have initially Tree[lgk-1] = a).
The parameter dolvl signals that only level 'dolvl' of
the tree should be computed (dolvl < 0 means all levels).
Either Tree <> NULL and TreeFile == NULL, and we write the tree to memory,
or Tree == NULL and TreeFile <> NULL, and we write the tree to disk.
*/
int
PolyFromRoots_Tree (listz_t G, listz_t a, unsigned int k, listz_t T,
int dolvl, mpz_t n, listz_t *Tree, FILE *TreeFile,
unsigned int sh)
{
unsigned int l, m;
listz_t H1, *NextTree;
ASSERT (k >= 1);
if (k == 1)
{
/* we consider x + a[0], which mean we consider negated roots */
mpz_mod (G[0], a[0], n);
return 0;
}
if (Tree == NULL) /* -treefile case */
{
H1 = G;
NextTree = NULL;
}
else
{
H1 = Tree[0] + sh;
NextTree = Tree + 1;
}
m = k / 2;
l = k - m;
if (dolvl != 0) /* either dolvl < 0 and we need to compute all levels,
or dolvl > 0 and we need first to compute lower levels */
{
PolyFromRoots_Tree (H1, a, l, T, dolvl - 1, n, NextTree, TreeFile, sh);
PolyFromRoots_Tree (H1 + l, a + l, m, T, dolvl - 1, n, NextTree,
TreeFile, sh + l);
}
if (dolvl <= 0)
{
/* Write this level to disk, if requested */
if (TreeFile != NULL)
{
if (list_out_raw (TreeFile, H1, l) == ECM_ERROR ||
list_out_raw (TreeFile, H1 + l, m) == ECM_ERROR)
{
outputf (OUTPUT_ERROR, "Error writing product tree of F\n");
return ECM_ERROR;
}
}
list_mul (T, H1, l, H1 + l, m, 1, T + k);
list_mod (G, T, k, n);
}
return 0;
}
/* puts in q[0..K-1] the quotient of x^(2K-2) by B
where B = b[0]+b[1]*x+...+b[K-1]*x^(K-1) with b[K-1]=1.
*/
void
PolyInvert (listz_t q, listz_t b, unsigned int K, listz_t t, mpz_t n)
{
if (K == 1)
{
mpz_set_ui (q[0], 1);
return;
}
else
{
int k, l, po2, use_middle_product = 0;
use_middle_product = 1;
k = K / 2;
l = K - k;
for (po2 = K; (po2 & 1) == 0; po2 >>= 1);
po2 = (po2 == 1 && Fermat != 0);
/* first determine l most-significant coeffs of Q */
PolyInvert (q + k, b + k, l, t, n); /* Q1 = {q+k, l} */
/* now Q1 * B = x^(2K-2) + O(x^(2K-2-l)) = x^(2K-2) + O(x^(K+k-2)).
We need the coefficients of degree K-1 to K+k-2 of Q1*B */
ASSERTD(list_check(q+k,l,n) && list_check(b,l,n));
if (po2 == 0 && use_middle_product)
{
TMulKS (t, k - 1, q + k, l - 1, b, K - 1, n, 0);
list_neg (t, t, k, n);
}
else if (po2)
{
list_revert (q + k, l);
/* This expects the leading monomials explicitly in q[2k-1] and b[k+l-1] */
F_mul_trans (t, q + k, b, K / 2, K, Fermat, t + k);
list_revert (q + k, l);
list_neg (t, t, k, n);
}
else
{
list_mult_n (t, q + k, b, l); /* t[0..2l-1] = Q1 * B0 */
list_neg (t, t + l - 1, k, n);
if (k > 1)
{
list_mul (t + k, q + k, l - 1, b + l, k - 1, 1,
t + k + K - 2); /* Q1 * B1 */
list_sub (t + 1, t + 1, t + k, k - 1);
}
}
list_mod (t, t, k, n); /* high(1-B*Q1) */
ASSERTD(list_check(t,k,n) && list_check(q+l,k,n));
if (po2)
F_mul (t + k, t, q + l, k, DEFAULT, Fermat, t + 3 * k);
else
list_mult_n (t + k, t, q + l, k);
list_mod (q, t + 2 * k - 1, k, n);
}
}
/*
Returns in a[0]+a[1]*x+...+a[K-1]*x^(K-1)
the remainder of the division of
A = a[0]+a[1]*x+...+a[2K-2]*x^(2K-2)
by B = b[0]+b[1]*x+...+b[K-1]*x^(K-1)+b[K]*x^K with b[K]=1 *explicit*.
(We have A = Q*B + R with deg(Q)=K-2 and deg(R)=K-1.)
Assumes invb[0]+invb[1]*x+...+invb[K-2]*x^(K-2) equals Quo(x^(2K-2), B).
Assumes K >= 2.
Requires 2K-1 + list_mul_mem(K) cells in t.
Notations: R = r[0..K-1], A = a[0..2K-2], low(A) = a[0..K-1],
high(A) = a[K..2K-2], Q = t[0..K-2]
Return non-zero iff an error occurred.
*/
int
PrerevertDivision (listz_t a, listz_t b, listz_t invb,
unsigned int K, listz_t t, mpz_t n)
{
int po2, wrap;
listz_t t2 = NULL;
wrap = ks_wrapmul_m (K + 1, K + 1, n) <= 2 * K - 1 + list_mul_mem (K);
/* Q <- high(high(A) * INVB) with a short product */
for (po2 = K; (po2 & 1) == 0; po2 >>= 1);
po2 = (po2 == 1);
if (Fermat && po2)
{
mpz_set_ui (a[2 * K - 1], 0);
if (K <= 4 * Fermat)
{
F_mul (t, a + K, invb, K, DEFAULT, Fermat, t + 2 * K);
/* Put Q in T, as we still need high(A) later on */
list_mod (t, t + K - 2, K, n);
}
else
{
F_mul (t, a + K, invb, K, DEFAULT, Fermat, t + 2 * K);
list_mod (a + K, t + K - 2, K, n);
}
}
else /* non-Fermat case */
{
list_mul_high (t, a + K, invb, K - 1);
/* the high part of A * INVB is now in {t+K-2, K-1} */
if (wrap)
{
t2 = init_list2 (K - 1, mpz_sizeinbase (n, 2));
ASSERT_ALWAYS(t2 != NULL);
list_mod (t2, t + K - 2, K - 1, n);
}
else /* we can store in high(A) which is no longer needed */
list_mod (a + K, t + K - 2, K - 1, n);
}
/* the quotient Q = trunc(A / B) has degree K-2, i.e. K-1 terms */
/* T <- low(Q * B) with a short product */
mpz_set_ui (a[2 * K - 1], 0);
if (Fermat && po2)
{
if (K <= 4 * Fermat)
{
/* Multiply without zero padding, result is (mod x^K - 1) */
F_mul (t + K, t, b, K, NOPAD, Fermat, t + 2 * K);
/* Take the leading monomial x^K of B into account */
list_add (t, t + K, t, K);
/* Subtract high(A) */
list_sub(t, t, a + K, K);
}
else
F_mul (t, a + K, b, K, DEFAULT, Fermat, t + 2 * K);
}
else /* non-Fermat case */
{
if (wrap)
/* Q = {t2, K-1}, B = {b, K+1}
We know that Q*B vanishes with the coefficients of degree
K to 2K-2 of {A, 2K-1} */
{
unsigned int m;
m = ks_wrapmul (t, K + 1, b, K + 1, t2, K - 1, n);
clear_list (t2, K - 1);
/* coefficients of degree m..2K-2 wrap around,
i.e. were added to 0..2K-2-m */
if (m < 2 * K - 1) /* otherwise product is exact */
list_sub (t, t, a + m, 2 * K - 1 - m);
}
else
list_mult_n (t, a + K, b, K);
}
/* now {t, K} contains the low K terms from Q*B */
list_sub (a, a, t, K);
list_mod (a, a, K, n);
return 0;
}