-
Notifications
You must be signed in to change notification settings - Fork 59
/
utils.py
330 lines (274 loc) · 15.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import torch
import numpy as np
import argparse
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class CTCLabelConverter(object):
""" Convert between text-label and text-index """
def __init__(self, character):
# character (str): set of the possible characters.
dict_character = list(character)
self.dict = {}
for i, char in enumerate(dict_character):
# NOTE: 0 is reserved for 'CTCblank' token required by CTCLoss
self.dict[char] = i + 1
self.character = ['[CTCblank]'] + dict_character # dummy '[CTCblank]' token for CTCLoss (index 0)
def encode(self, text, batch_max_length=25):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
batch_max_length: max length of text label in the batch. 25 by default
output:
text: text index for CTCLoss. [batch_size, batch_max_length]
length: length of each text. [batch_size]
"""
length = [len(s) for s in text]
# The index used for padding (=0) would not affect the CTC loss calculation.
batch_text = torch.LongTensor(len(text), batch_max_length).fill_(0)
for i, t in enumerate(text):
text = list(t)
text = [self.dict[char] for char in text]
batch_text[i][:len(text)] = torch.LongTensor(text)
return (batch_text.to(device), torch.IntTensor(length).to(device))
def decode(self, text_index, length):
""" convert text-index into text-label. """
texts = []
for index, l in enumerate(length):
t = text_index[index, :]
char_list = []
for i in range(l):
if t[i] != 0 and (not (i > 0 and t[i - 1] == t[i])): # removing repeated characters and blank.
char_list.append(self.character[t[i]])
text = ''.join(char_list)
texts.append(text)
return texts
class CTCLabelConverterForBaiduWarpctc(object):
""" Convert between text-label and text-index for baidu warpctc """
def __init__(self, character):
# character (str): set of the possible characters.
dict_character = list(character)
self.dict = {}
for i, char in enumerate(dict_character):
# NOTE: 0 is reserved for 'CTCblank' token required by CTCLoss
self.dict[char] = i + 1
self.character = ['[CTCblank]'] + dict_character # dummy '[CTCblank]' token for CTCLoss (index 0)
def encode(self, text, batch_max_length=25):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
output:
text: concatenated text index for CTCLoss.
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
length: length of each text. [batch_size]
"""
length = [len(s) for s in text]
text = ''.join(text)
text = [self.dict[char] for char in text]
return (torch.IntTensor(text), torch.IntTensor(length))
def decode(self, text_index, length):
""" convert text-index into text-label. """
texts = []
index = 0
for l in length:
t = text_index[index:index + l]
char_list = []
for i in range(l):
if t[i] != 0 and (not (i > 0 and t[i - 1] == t[i])): # removing repeated characters and blank.
char_list.append(self.character[t[i]])
text = ''.join(char_list)
texts.append(text)
index += l
return texts
class AttnLabelConverter(object):
""" Convert between text-label and text-index """
def __init__(self, character):
# character (str): set of the possible characters.
# [GO] for the start token of the attention decoder. [s] for end-of-sentence token.
list_token = ['[GO]', '[s]'] # ['[s]','[UNK]','[PAD]','[GO]']
list_character = list(character)
self.character = list_token + list_character
self.dict = {}
for i, char in enumerate(self.character):
# print(i, char)
self.dict[char] = i
def encode(self, text, batch_max_length=25):
""" convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
batch_max_length: max length of text label in the batch. 25 by default
output:
text : the input of attention decoder. [batch_size x (max_length+2)] +1 for [GO] token and +1 for [s] token.
text[:, 0] is [GO] token and text is padded with [GO] token after [s] token.
length : the length of output of attention decoder, which count [s] token also. [3, 7, ....] [batch_size]
"""
length = [len(s) + 1 for s in text] # +1 for [s] at end of sentence.
# batch_max_length = max(length) # this is not allowed for multi-gpu setting
batch_max_length += 1
# additional +1 for [GO] at first step. batch_text is padded with [GO] token after [s] token.
batch_text = torch.LongTensor(len(text), batch_max_length + 1).fill_(0)
for i, t in enumerate(text):
text = list(t)
text.append('[s]')
text = [self.dict[char] for char in text]
batch_text[i][1:1 + len(text)] = torch.LongTensor(text) # batch_text[:, 0] = [GO] token
return (batch_text.to(device), torch.IntTensor(length).to(device))
def decode(self, text_index, length):
""" convert text-index into text-label. """
texts = []
for index, l in enumerate(length):
text = ''.join([self.character[i] for i in text_index[index, :]])
texts.append(text)
return texts
class TokenLabelConverter(object):
""" Convert between text-label and text-index """
def __init__(self, opt):
# character (str): set of the possible characters.
# [GO] for the start token of the attention decoder. [s] for end-of-sentence token.
self.SPACE = '[s]'
self.GO = '[GO]'
#self.MASK = '[MASK]'
#self.list_token = [self.GO, self.SPACE, self.MASK]
self.list_token = [self.GO, self.SPACE]
self.character = self.list_token + list(opt.character)
self.dict = {word: i for i, word in enumerate(self.character)}
self.batch_max_length = opt.batch_max_length + len(self.list_token)
def encode(self, text):
""" convert text-label into text-index.
"""
length = [len(s) + len(self.list_token) for s in text] # +2 for [GO] and [s] at end of sentence.
batch_text = torch.LongTensor(len(text), self.batch_max_length).fill_(self.dict[self.GO])
for i, t in enumerate(text):
txt = [self.GO] + list(t) + [self.SPACE]
txt = [self.dict[char] for char in txt]
#prob = np.random.uniform()
#mask_len = round(len(list(t)) * 0.15)
#if is_train and mask_len > 0:
# for m in range(mask_len):
# index = np.random.randint(1, len(t) + 1)
# prob = np.random.uniform()
# if prob > 0.2:
# text[index] = self.dict[self.MASK]
# batch_weights[i][index] = 1.
# elif prob > 0.1:
# char_index = np.random.randint(len(self.list_token), len(self.character))
# text[index] = self.dict[self.character[char_index]]
# batch_weights[i][index] = 1.
batch_text[i][:len(txt)] = torch.LongTensor(txt) # batch_text[:, 0] = [GO] token
return batch_text.to(device)
def decode(self, text_index, length):
""" convert text-index into text-label. """
texts = []
for index, l in enumerate(length):
text = ''.join([self.character[i] for i in text_index[index, :]])
texts.append(text)
return texts
class Averager(object):
"""Compute average for torch.Tensor, used for loss average."""
def __init__(self):
self.reset()
def add(self, v):
count = v.data.numel()
v = v.data.sum()
self.n_count += count
self.sum += v
def reset(self):
self.n_count = 0
self.sum = 0
def val(self):
res = 0
if self.n_count != 0:
res = self.sum / float(self.n_count)
return res
def get_device(verbose=True):
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
if verbose:
print("Device:", device)
return device
def get_args(is_train=True):
parser = argparse.ArgumentParser(description='STR')
# for test
parser.add_argument('--eval_data', required=not is_train, help='path to evaluation dataset')
parser.add_argument('--benchmark_all_eval', action='store_true', help='evaluate 10 benchmark evaluation datasets')
parser.add_argument('--calculate_infer_time', action='store_true', help='calculate inference timing')
parser.add_argument('--flops', action='store_true', help='calculates approx flops (may not work)')
# for train
parser.add_argument('--exp_name', help='Where to store logs and models')
parser.add_argument('--train_data', required=is_train, help='path to training dataset')
parser.add_argument('--valid_data', required=is_train, help='path to validation dataset')
parser.add_argument('--manualSeed', type=int, default=1111, help='for random seed setting')
parser.add_argument('--workers', type=int, help='number of data loading workers. Use -1 to use all cores.', default=4)
parser.add_argument('--batch_size', type=int, default=192, help='input batch size')
parser.add_argument('--num_iter', type=int, default=300000, help='number of iterations to train for')
parser.add_argument('--valInterval', type=int, default=2000, help='Interval between each validation')
parser.add_argument('--saved_model', default='', help="path to model to continue training")
parser.add_argument('--FT', action='store_true', help='whether to do fine-tuning')
parser.add_argument('--sgd', action='store_true', help='Whether to use SGD (default is Adadelta)')
parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is Adadelta)')
parser.add_argument('--lr', type=float, default=1, help='learning rate, default=1.0 for Adadelta')
parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam. default=0.9')
parser.add_argument('--rho', type=float, default=0.95, help='decay rate rho for Adadelta. default=0.95')
parser.add_argument('--eps', type=float, default=1e-8, help='eps for Adadelta. default=1e-8')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping value. default=5')
parser.add_argument('--baiduCTC', action='store_true', help='for data_filtering_off mode')
""" Data processing """
parser.add_argument('--select_data', type=str, default='MJ-ST',
help='select training data (default is MJ-ST, which means MJ and ST used as training data)')
parser.add_argument('--batch_ratio', type=str, default='0.5-0.5',
help='assign ratio for each selected data in the batch')
parser.add_argument('--total_data_usage_ratio', type=str, default='1.0',
help='total data usage ratio, this ratio is multiplied to total number of data.')
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
parser.add_argument('--character', type=str,
default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
parser.add_argument('--data_filtering_off', action='store_true', help='for data_filtering_off mode')
""" Model Architecture """
parser.add_argument('--Transformer', action='store_true', help='Use end-to-end transformer')
choices = ["vitstr_tiny_patch16_224", "vitstr_small_patch16_224", "vitstr_base_patch16_224", "vitstr_tiny_distilled_patch16_224", "vitstr_small_distilled_patch16_224"]
parser.add_argument('--TransformerModel', default=choices[0], help='Which vit/deit transformer model', choices=choices)
parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS')
parser.add_argument('--FeatureExtraction', type=str, required=True,
help='FeatureExtraction stage. VGG|RCNN|ResNet')
parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM')
parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. None|CTC|Attn')
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
parser.add_argument('--input_channel', type=int, default=1,
help='the number of input channel of Feature extractor')
parser.add_argument('--output_channel', type=int, default=512,
help='the number of output channel of Feature extractor')
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
# selective augmentation
# can choose specific data augmentation
parser.add_argument('--issel_aug', action='store_true', help='Select augs')
parser.add_argument('--sel_prob', type=float, default=1., help='Probability of applying augmentation')
parser.add_argument('--pattern', action='store_true', help='Pattern group')
parser.add_argument('--warp', action='store_true', help='Warp group')
parser.add_argument('--geometry', action='store_true', help='Geometry group')
parser.add_argument('--weather', action='store_true', help='Weather group')
parser.add_argument('--noise', action='store_true', help='Noise group')
parser.add_argument('--blur', action='store_true', help='Blur group')
parser.add_argument('--camera', action='store_true', help='Camera group')
parser.add_argument('--process', action='store_true', help='Image processing routines')
# use cosine learning rate decay
parser.add_argument('--scheduler', action='store_true', help='Use lr scheduler')
parser.add_argument('--intact_prob', type=float, default=0.5, help='Probability of not applying augmentation')
parser.add_argument('--isrand_aug', action='store_true', help='Use RandAug')
parser.add_argument('--augs_num', type=int, default=3, help='Number of data augment groups to apply. 1 to 8.')
parser.add_argument('--augs_mag', type=int, default=None, help='Magnitude of data augment groups to apply. None if random.')
# for comparison to other augmentations
parser.add_argument('--issemantic_aug', action='store_true', help='Use Semantic')
parser.add_argument('--isrotation_aug', action='store_true', help='Use ')
parser.add_argument('--isscatter_aug', action='store_true', help='Use ')
parser.add_argument('--islearning_aug', action='store_true', help='Use ')
# orig paper uses this for fast benchmarking
parser.add_argument('--fast_acc', action='store_true', help='Fast average accuracy computation')
parser.add_argument('--infer_model', type=str,
default=None, help='generate inference jit model')
parser.add_argument('--quantized', action='store_true', help='Model quantization')
parser.add_argument('--static', action='store_true', help='Static model quantization')
args = parser.parse_args()
return args