-
Notifications
You must be signed in to change notification settings - Fork 50
/
nerf_blender_base01.py
226 lines (208 loc) · 7.36 KB
/
nerf_blender_base01.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
_base_ = [
# '../_base_/models/nerf.py',
# '../_base_/schedules/adam_20w_iter.py',
# '../_base_/default_runtime.py'
]
import os
from datetime import datetime
method = 'nerf' # [nerf, kilo_nerf, mip_nerf]
# optimizer
optimizer = dict(type='Adam', lr=5e-4, betas=(0.9, 0.999))
optimizer_config = dict(grad_clip=None)
max_iters = 200000
lr_config = dict(policy='step', step=500 * 1000, gamma=0.1, by_epoch=False)
checkpoint_config = dict(interval=5, by_epoch=False)
log_level = 'INFO'
log_config = dict(interval=5,
by_epoch=False,
hooks=[dict(type='TextLoggerHook')])
workflow = [('train', 5), ('val', 1)]
# hooks
# 'params' are numeric type value, 'variables' are variables in local environment
train_hooks = [
dict(type='SetValPipelineHook',
params=dict(),
variables=dict(valset='valset')),
dict(type='ValidateHook',
params=dict(save_folder='visualizations/validation')),
dict(type='SaveSpiralHook',
params=dict(save_folder='visualizations/spiral')),
dict(type='PassIterHook', params=dict()), # 将当前iter数告诉dataset
dict(type='OccupationHook',
params=dict()), # no need for open-source vision
]
test_hooks = [
dict(type='SetValPipelineHook',
params=dict(),
variables=dict(valset='testset')),
dict(type='TestHook', params=dict()),
]
# runner
train_runner = dict(type='NerfTrainRunner')
test_runner = dict(type='NerfTestRunner')
# runtime settings
num_gpus = 1
distributed = (num_gpus > 1) # 是否多卡,mmcv对dp多卡支持不好,故而要么单卡要么ddp多卡
work_dir = './work_dirs/nerf/nerf_#DATANAME#_base01/'
timestamp = datetime.now().strftime('%d-%b-%H-%M')
# shared params by model and data and ...
dataset_type = 'blender'
no_batching = True # only take random rays from 1 image at a time
no_ndc = True # 源代码中'if args.dataset_type != 'llff' or args.no_ndc:' 就设置no_ndc
white_bkgd = True # set to render synthetic data on a white bkgd (always use for dvoxels)
is_perturb = True # set to 0. for no jitter, 1. for jitter
use_viewdirs = True # use full 5D input instead of 3D
N_rand_per_sampler = 1024 * 4 # how many N_rand in get_item() function
lindisp = False # sampling linearly in disparity rather than depth
N_samples = 64 # number of coarse samples per ray
# resume_from = os.path.join(work_dir, 'latest.pth')
load_from = os.path.join(work_dir, 'latest.pth')
model = dict(
type='NerfNetwork',
cfg=dict(
phase='train', # 'train' or 'test'
N_importance=128, # number of additional fine samples per ray
is_perturb=is_perturb,
chunk=1024 * 32, # mainly work for val
bs_data=
'rays_o', # the data's shape indicates the real batch-size, this's also the num of rays
),
mlp=dict( # coarse model
type='NerfMLP',
skips=[4],
netdepth=8, # layers in network
netwidth=256, # channels per layer
netchunk=1024 * 32, # number of pts sent through network in parallel;
output_ch=5, # 5 if cfg.N_importance>0 else 4
use_viewdirs=use_viewdirs,
embedder=dict(
type='BaseEmbedder',
i_embed=0, # set 0 for default positional encoding, -1 for none
multires=
10, # log2 of max freq for positional encoding (3D location)
multires_dirs=
4, # this is 'multires_views' in origin codes, log2 of max freq for positional encoding (2D direction)
),
),
mlp_fine=dict( # fine model
type='NerfMLP',
skips=[4],
netdepth=8, # layers in fine network
netwidth=256, # channels per layer in fine network
netchunk=1024 * 32,
output_ch=5, # 5 if cfg.N_importance>0 else 4
use_viewdirs=use_viewdirs, # same as above
embedder=dict(
type='BaseEmbedder',
i_embed=0, # set 0 for default positional encoding, -1 for none
multires=
10, # log2 of max freq for positional encoding (3D location)
multires_dirs=
4, # this is 'multires_views' in origin codes, log2 of max freq for positional encoding (2D direction)
),
),
render=dict( # render model
type='NerfRender',
white_bkgd=
white_bkgd, # set to render synthetic data on a white bkgd (always use for dvoxels)
raw_noise_std=
0, # std dev of noise added to regularize sigma_a output, 1e0 recommended
),
)
basedata_cfg = dict(
dataset_type=dataset_type,
datadir='data/nerf_synthetic/#DATANAME#',
half_res=True, # load blender synthetic data at 400x400 instead of 800x800
testskip=
8, # will load 1/N images from test/val sets, useful for large datasets like deepvoxels
white_bkgd=white_bkgd,
is_batching=False, # True for blender, False for llff
mode='train',
)
traindata_cfg = basedata_cfg.copy()
valdata_cfg = basedata_cfg.copy()
testdata_cfg = basedata_cfg.copy()
traindata_cfg.update(dict())
valdata_cfg.update(dict(mode='val'))
testdata_cfg.update(dict(mode='test', testskip=0))
train_pipeline = [
dict(type='Sample'),
dict(type='DeleteUseless', keys=['images', 'poses', 'i_data', 'idx']),
dict(
type='ToTensor',
enable=True,
keys=['pose', 'target_s'],
),
dict(
type='GetRays',
enable=True,
), # 与batching型dataset不同的是, 需要从pose生成rays
dict(type='SelectRays',
enable=True,
sel_n=N_rand_per_sampler,
precrop_iters=500,
precrop_frac=0.5), # 抽取N个射线
dict(
type='GetViewdirs',
enable=use_viewdirs,
),
dict(
type='ToNDC',
enable=(not no_ndc),
),
dict(type='GetBounds', enable=True),
dict(type='GetZvals', enable=True, lindisp=lindisp,
N_samples=N_samples), # N_samples: number of coarse samples per ray
dict(type='PerturbZvals', enable=is_perturb),
dict(type='GetPts', enable=True),
dict(type='DeleteUseless', enable=True,
keys=['pose', 'iter_n']), # 删除pose 其实求完ray就不再需要了
]
test_pipeline = [
dict(
type='ToTensor',
enable=True,
keys=['pose'],
),
dict(
type='GetRays',
enable=True,
),
dict(type='FlattenRays',
enable=True), # 原来是(H, W, ..) 变成(H*W, ...) 记录下原来的尺寸
dict(
type='GetViewdirs',
enable=use_viewdirs,
),
dict(
type='ToNDC',
enable=(not no_ndc),
),
dict(type='GetBounds', enable=True),
dict(type='GetZvals', enable=True, lindisp=lindisp,
N_samples=N_samples), # 同上train_pipeline
dict(type='PerturbZvals', enable=False), # 测试集不扰动
dict(type='GetPts', enable=True),
dict(type='DeleteUseless', enable=True,
keys=['pose']), # 删除pose 其实求完ray就不再需要了
]
data = dict(
train_loader=dict(batch_size=1, num_workers=4),
train=dict(
type='SceneBaseDataset',
cfg=traindata_cfg,
pipeline=train_pipeline,
),
val_loader=dict(batch_size=1, num_workers=0),
val=dict(
type='SceneBaseDataset',
cfg=valdata_cfg,
pipeline=test_pipeline,
),
test_loader=dict(batch_size=1, num_workers=0),
test=dict(
type='SceneBaseDataset',
cfg=testdata_cfg,
pipeline=test_pipeline, # same pipeline as validation
),
)