-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
adm_ddim250_8xb32_imagenet-64x64.py
48 lines (45 loc) · 1.36 KB
/
adm_ddim250_8xb32_imagenet-64x64.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
_base_ = [
'../_base_/datasets/imagenet_64.py',
'../_base_/gen_default_runtime.py',
]
model = dict(
type='AblatedDiffusionModel',
data_preprocessor=dict(type='DataPreprocessor'),
unet=dict(
type='DenoisingUnet',
image_size=64,
in_channels=3,
base_channels=192,
resblocks_per_downsample=3,
attention_res=(32, 16, 8),
norm_cfg=dict(type='GN32', num_groups=32),
dropout=0.1,
num_classes=1000,
use_fp16=False,
resblock_updown=True,
attention_cfg=dict(
type='MultiHeadAttentionBlock',
num_heads=4,
num_head_channels=64,
use_new_attention_order=True),
use_scale_shift_norm=True),
diffusion_scheduler=dict(
type='EditDDIMScheduler',
variance_type='learned_range',
beta_schedule='squaredcos_cap_v2'),
rgb2bgr=True,
use_fp16=False)
test_dataloader = dict(batch_size=32, num_workers=8)
train_cfg = dict(max_iters=100000)
metrics = [
dict(
type='FrechetInceptionDistance',
prefix='FID-Full-50k',
fake_nums=50000,
inception_style='StyleGAN',
sample_model='orig',
sample_kwargs=dict(
num_inference_steps=250, show_progress=True, classifier_scale=1.))
]
val_evaluator = dict(metrics=metrics)
test_evaluator = dict(metrics=metrics)