-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
dreambooth-lora.py
82 lines (75 loc) · 2.42 KB
/
dreambooth-lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
_base_ = '../_base_/gen_default_runtime.py'
# config for model
stable_diffusion_v15_url = 'runwayml/stable-diffusion-v1-5'
val_prompts = [
'a sks dog in basket', 'a sks dog on the mountain',
'a sks dog beside a swimming pool', 'a sks dog on the desk',
'a sleeping sks dog', 'a screaming sks dog', 'a man in the garden'
]
lora_config = dict(target_modules=['to_q', 'to_k', 'to_v'])
model = dict(
type='DreamBooth',
vae=dict(
type='AutoencoderKL',
from_pretrained=stable_diffusion_v15_url,
subfolder='vae'),
unet=dict(
type='UNet2DConditionModel',
subfolder='unet',
from_pretrained=stable_diffusion_v15_url),
text_encoder=dict(
type='ClipWrapper',
clip_type='huggingface',
pretrained_model_name_or_path=stable_diffusion_v15_url,
subfolder='text_encoder'),
tokenizer=stable_diffusion_v15_url,
scheduler=dict(
type='DDPMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
test_scheduler=dict(
type='DDIMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
data_preprocessor=dict(type='DataPreprocessor', data_keys=None),
prior_loss_weight=0,
val_prompts=val_prompts,
lora_config=lora_config)
train_cfg = dict(max_iters=1000)
optim_wrapper = dict(
# Only optimize LoRA mappings
modules='.*.lora_mapping',
# NOTE: lr should be larger than dreambooth finetuning
optimizer=dict(type='AdamW', lr=5e-4),
accumulative_counts=1)
pipeline = [
dict(type='LoadImageFromFile', key='img', channel_order='rgb'),
dict(type='Resize', scale=(512, 512)),
dict(type='PackInputs')
]
dataset = dict(
type='DreamBoothDataset',
data_root='./data/dreambooth',
# TODO: rename to instance
concept_dir='imgs',
prompt='a photo of sks dog',
pipeline=pipeline)
train_dataloader = dict(
dataset=dataset,
num_workers=16,
sampler=dict(type='InfiniteSampler', shuffle=True),
persistent_workers=True,
batch_size=1)
val_cfg = val_evaluator = val_dataloader = None
test_cfg = test_evaluator = test_dataloader = None
# hooks
default_hooks = dict(logger=dict(interval=10))
custom_hooks = [
dict(
type='VisualizationHook',
interval=50,
fixed_input=True,
# visualize train dataset
vis_kwargs_list=dict(type='Data', name='fake_img'),
n_samples=1)
]