-
Notifications
You must be signed in to change notification settings - Fork 10
/
main.py
400 lines (344 loc) · 16.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#!/usr/bin/env python
# coding=utf-8
'''
Author:Tai Lei
Date:Wed Sep 19 20:30:48 2018
Info:
References: https://github.com/pytorch/examples/tree/master/imagenet
'''
import argparse
import os
import random
import time
import datetime
import math
import logging
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim as optim
from tensorboardX import SummaryWriter
from carla_net import CarlaNet, FinalNet
from carla_loader import CarlaH5Data
from helper import AverageMeter, save_checkpoint
parser = argparse.ArgumentParser(description='Carla CIL training')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--speed-weight', default=0.1, type=float,
help='speed weight')
parser.add_argument('--branch-weight', default=1, type=float,
help='branch weight')
parser.add_argument('--id', default="test", type=str)
parser.add_argument('--train-dir',
default="/home/tai/ws/ijrr_2018/carla_cil_dataset/AgentHuman/chosen_weather_train/clearnoon_h5/",
type=str, metavar='PATH',
help='training dataset')
parser.add_argument('--eval-dir',
default="/home/tai/ws/ijrr_2018/carla_cil_dataset/AgentHuman/chosen_weather_test/clearnoon_h5/",
type=str, metavar='PATH',
help='evaluation dataset')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=1, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=1e-4, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--lr-step', default=10, type=int,
help='learning rate step size')
parser.add_argument('--lr-gamma', default=0.5, type=float,
help='learning rate gamma')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--evaluate-log', default="",
type=str, metavar='PATH',
help='path to log evaluation results (default: none)')
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--net-structure', default=2, type=int,
help='Network structure 1|2|3|4.')
# 1 pure regression
# 2 uncertainty separate branch
# 3 uncertainty unify
# 4 uncertainty under branch
def output_log(output_str, logger=None):
"""
standard output and logging
"""
print("[{}]: {}".format(datetime.datetime.now(), output_str))
if logger is not None:
logger.critical("[{}]: {}".format(datetime.datetime.now(), output_str))
def log_args(logger):
'''
log args
'''
attrs = [(p, getattr(args, p)) for p in dir(args) if not p.startswith('_')]
for key, value in attrs:
output_log("{}: {}".format(key, value), logger=logger)
def main():
global args
args = parser.parse_args()
log_dir = os.path.join("./", "logs", args.id)
run_dir = os.path.join("./", "runs", args.id)
save_weight_dir = os.path.join("./save_models", args.id)
os.makedirs(log_dir, exist_ok=True)
os.makedirs(save_weight_dir, exist_ok=True)
logging.basicConfig(filename=os.path.join(log_dir, "carla_training.log"),
level=logging.ERROR)
tsbd = SummaryWriter(log_dir=run_dir)
log_args(logging)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
output_log(
'You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.', logger=logging)
if args.gpu is not None:
output_log('You have chosen a specific GPU. This will completely '
'disable data parallelism.', logger=logging)
args.distributed = args.world_size > 1
if args.distributed:
dist.init_process_group(backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=0)
model = FinalNet(args.net_structure)
criterion = nn.MSELoss()
model.carla_net.load_state_dict(
torch.load("./save_models/new_structure_best.pth")['state_dict'])
tsbd.add_graph(model,
(torch.zeros(1, 3, 88, 200),
torch.zeros(1, 1)))
if args.gpu is not None:
model = model.cuda(args.gpu)
else:
model = torch.nn.DataParallel(model).cuda()
optimizer = optim.Adam(
model.uncertain_net.parameters(), args.lr, betas=(0.7, 0.85))
lr_scheduler = optim.lr_scheduler.StepLR(
optimizer, step_size=args.lr_step, gamma=args.lr_gamma)
best_prec = math.inf
# optionally resume from a checkpoint
if args.resume:
args.resume = os.path.join(save_weight_dir, args.resume)
if os.path.isfile(args.resume):
output_log("=> loading checkpoint '{}'".format(args.resume),
logging)
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['scheduler'])
best_prec = checkpoint['best_prec']
output_log("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']), logging)
else:
output_log("=> no checkpoint found at '{}'".format(args.resume),
logging)
cudnn.benchmark = True
carla_data = CarlaH5Data(
train_folder=args.train_dir,
eval_folder=args.eval_dir,
batch_size=args.batch_size,
num_workers=args.workers)
train_loader = carla_data.loaders["train"]
eval_loader = carla_data.loaders["eval"]
if args.evaluate:
args.id = args.id+"_test"
if not os.path.isfile(args.resume):
output_log("=> no checkpoint found at '{}'"
.format(args.resume), logging)
return
if args.evaluate_log == "":
output_log("=> please set evaluate log path with --evaluate-log <log-path>")
evaluate(eval_loader, model, criterion, 0, tsbd)
return
for epoch in range(args.start_epoch, args.epochs):
lr_scheduler.step()
branch_losses, speed_losses, losses = \
train(train_loader, model, criterion, optimizer, epoch, tsbd)
prec = evaluate(eval_loader, model, criterion, epoch, tsbd)
# remember best prec@1 and save checkpoint
is_best = prec < best_prec
best_prec = min(prec, best_prec)
save_checkpoint(
{'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec': best_prec,
'scheduler': lr_scheduler.state_dict(),
'optimizer': optimizer.state_dict()},
args.id,
is_best,
os.path.join(
save_weight_dir,
"{}_{}.pth".format(epoch+1, args.id))
)
def train(loader, model, criterion, optimizer, epoch, writer):
batch_time = AverageMeter()
data_time = AverageMeter()
uncertain_losses = AverageMeter()
ori_losses = AverageMeter()
branch_losses = AverageMeter()
speed_losses = AverageMeter()
uncertain_control_means = AverageMeter()
uncertain_speed_means = AverageMeter()
# switch to train mode
model.train()
end = time.time()
step = epoch * len(loader)
for i, (img, speed, target, mask) in enumerate(loader):
data_time.update(time.time() - end)
# if args.gpu is not None:
img = img.cuda(args.gpu, non_blocking=True)
speed = speed.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
mask = mask.cuda(args.gpu, non_blocking=True)
if args.net_structure != 1:
branches_out, pred_speed, log_var_control, log_var_speed = model(img,
speed)
branch_square = torch.pow((branches_out - target), 2)
branch_loss = torch.mean((torch.exp(-log_var_control)
* branch_square
+ log_var_control) * 0.5 * mask) * 4
speed_square = torch.pow((pred_speed - speed), 2)
speed_loss = torch.mean((torch.exp(-log_var_speed)
* speed_square
+ log_var_speed) * 0.5)
uncertain_loss = args.branch_weight*branch_loss+args.speed_weight*speed_loss
with torch.no_grad():
ori_loss = args.branch_weight * torch.mean(branch_square*mask*4) \
+ args.speed_weight * torch.mean(speed_square)
uncertain_control_mean = torch.mean(torch.exp(log_var_control) * mask * 4)
uncertain_speed_mean = torch.mean(torch.exp(log_var_speed))
ori_losses.update(ori_loss.item(), args.batch_size)
uncertain_control_means.update(uncertain_control_mean.item(),
args.batch_size)
uncertain_speed_means.update(uncertain_speed_mean.item(),
args.batch_size)
else:
branches_out, pred_speed = model(img, speed)
branch_loss = criterion(branches_out * mask, target) * 4
speed_loss = criterion(pred_speed, speed)
uncertain_loss = args.branch_weight * branch_loss \
+ args.speed_weight * speed_loss
uncertain_losses.update(uncertain_loss.item(), args.batch_size)
branch_losses.update(branch_loss.item(), args.batch_size)
speed_losses.update(speed_loss.item(), args.batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
model.zero_grad()
uncertain_loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0 or i+1 == len(loader):
writer.add_scalar('train/branch_loss', branch_losses.val, step+i)
writer.add_scalar('train/speed_loss', speed_losses.val, step+i)
writer.add_scalar('train/uncertain_loss', uncertain_losses.val, step+i)
writer.add_scalar('train/ori_loss', ori_losses.val, step+i)
writer.add_scalar('train/control_uncertain',
uncertain_control_means.val, step+i)
writer.add_scalar('train/speed_uncertain',
uncertain_speed_means.val, step+i)
output_log(
'Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Branch loss {branch_loss.val:.3f} ({branch_loss.avg:.3f})\t'
'Speed loss {speed_loss.val:.3f} ({speed_loss.avg:.3f})\t'
'Uncertain Loss {uncertain_loss.val:.4f} ({uncertain_loss.avg:.4f})\t'
'Ori Loss {ori_loss.val:.4f} ({ori_loss.avg:.4f})\t'
'Control Uncertain {control_uncertain.val:.4f} ({control_uncertain.avg:.4f})\t'
'Speed Uncertain {speed_uncertain.val:.4f} ({speed_uncertain.avg:.4f})\t'
.format(
epoch+1, i, len(loader), batch_time=batch_time,
data_time=data_time,
branch_loss=branch_losses,
speed_loss=speed_losses,
uncertain_loss=uncertain_losses,
ori_loss=ori_losses,
control_uncertain=uncertain_control_means,
speed_uncertain=uncertain_speed_means
), logging)
return branch_losses.avg, speed_losses.avg, uncertain_losses.avg
def evaluate(loader, model, criterion, epoch, writer):
batch_time = AverageMeter()
uncertain_losses = AverageMeter()
ori_losses = AverageMeter()
uncertain_control_means = AverageMeter()
uncertain_speed_means = AverageMeter()
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (img, speed, target, mask) in enumerate(loader):
img = img.cuda(args.gpu, non_blocking=True)
speed = speed.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
mask = mask.cuda(args.gpu, non_blocking=True)
branches_out, pred_speed, log_var_control, log_var_speed = model(img, speed)
mask_out = branches_out * mask
ori_branch_loss = criterion(mask_out, target) * 4
ori_speed_loss = criterion(pred_speed, speed)
branch_loss = torch.mean((torch.exp(-log_var_control)
* torch.pow((branches_out - target), 2)
+ log_var_control) * 0.5 * mask) * 4
speed_loss = torch.mean((torch.exp(-log_var_speed)
* torch.pow((pred_speed - speed), 2)
+ log_var_speed) * 0.5)
uncertain_loss = args.branch_weight*branch_loss + \
args.speed_weight*speed_loss
ori_loss = args.branch_weight*ori_branch_loss + \
args.speed_weight*ori_speed_loss
uncertain_control_mean = torch.mean(torch.exp(log_var_control) * mask * 4)
uncertain_speed_mean = torch.mean(torch.exp(log_var_speed))
uncertain_losses.update(uncertain_loss.item(), args.batch_size)
ori_losses.update(ori_loss.item(), args.batch_size)
uncertain_control_means.update(uncertain_control_mean.item(),
args.batch_size)
uncertain_speed_means.update(uncertain_speed_mean.item(),
args.batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
writer.add_scalar('eval/uncertain_loss', uncertain_losses.avg, epoch+1)
writer.add_scalar('eval/origin_loss', ori_losses.avg, epoch+1)
writer.add_scalar('eval/control_uncertain',
uncertain_control_means.avg, epoch+1)
writer.add_scalar('eval/speed_uncertain',
uncertain_speed_means.avg, epoch+1)
output_log(
'Epoch Test: [{0}]\t'
'Time {batch_time.avg:.3f}\t'
'Uncertain Loss {uncertain_loss.avg:.4f}\t'
'Original Loss {ori_loss.avg:.4f}\t'
'Control Uncertain {control_uncertain.avg:.4f}\t'
'Speed Uncertain {speed_uncertain.avg:.4f}\t'
.format(
epoch+1, batch_time=batch_time,
uncertain_loss=uncertain_losses,
ori_loss=ori_losses,
control_uncertain=uncertain_control_means,
speed_uncertain=uncertain_speed_means,
), logging)
return uncertain_losses.avg
if __name__ == '__main__':
main()