-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
155 lines (146 loc) · 6.49 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from accelerate import Accelerator
from diffusers import (
DiffusionPipeline,
UNet2DConditionModel,
DDPMScheduler,
DDIMScheduler,
)
from transformers import CLIPTextModel
from helpers.prompts import prompts
from compel import Compel
import torch, os, logging
logger = logging.getLogger("SimpleTuner-inference")
logger.setLevel(logging.INFO)
# Load the pipeline with the same arguments (model, revision) that were used for training
model_id = "stabilityai/stable-diffusion-2"
model_id = "ptx0/pseudo-flex-base"
base_dir = "/notebooks/datasets"
model_path = os.path.join(base_dir, "models")
# output_test_dir = os.path.join(base_dir, 'test_results')
output_test_dir = os.path.join(base_dir, "encoder_test")
save_pretrained = False
torch_seed = 4202420420
# Find the latest checkpoint
import os
checkpoints = [
int(x.split("-")[1]) for x in os.listdir(model_path) if x.startswith("checkpoint-")
]
checkpoints.sort()
range_begin = 0
range_step = 100
base_checkpoint_for_unet = (
0 # Use the unet from this model for comparison against text encoder progress.
)
try:
range_end = checkpoints[-1]
except Exception as e:
range_end = range_begin
logging.info(f"Highest checkpoint found so far: {range_end}")
# Convert numeric range to an array of string numerics:
# checkpoints = [ str(x) for x in range(range_begin, range_end + range_step, range_step) ]
checkpoints.reverse()
torch.set_float32_matmul_precision("high")
negative = "deep fried watermark cropped out-of-frame low quality low res oorly drawn bad anatomy wrong anatomy extra limb missing limb floating limbs (mutated hands and fingers)1.4 disconnected limbs mutation mutated ugly disgusting blurry amputation synthetic rendering"
for checkpoint in checkpoints:
for enable_textencoder in [False]:
suffix = (
"t" if enable_textencoder else "b" if enable_textencoder is None else "u"
)
if len(checkpoints) > 1 and os.path.isfile(
f"{output_test_dir}/target-{checkpoint}_{base_checkpoint_for_unet}{suffix}.png"
):
continue
try:
logging.info(f"Loading checkpoint: {model_path}/checkpoint-{checkpoint}")
# Does the checkpoint path exist?
if checkpoint != "0" and not os.path.exists(
f"{model_path}/checkpoint-{checkpoint}"
):
logging.info(f"Checkpoint {checkpoint} does not exist.")
continue
if checkpoint != "0":
logging.info(f"Loading non-base ckpt.")
if enable_textencoder is None:
logging.info(f"Loading full unet and te")
# Enable fully-trained text_encoder and unet
text_encoder = CLIPTextModel.from_pretrained(
f"{model_path}/checkpoint-{checkpoint}/text_encoder"
)
unet = UNet2DConditionModel.from_pretrained(
f"{model_path}/checkpoint-{checkpoint}/unet"
)
pipeline = DiffusionPipeline.from_pretrained(
model_id, unet=unet, text_encoder=text_encoder
)
elif enable_textencoder:
# Enable the fully-trained text encoder with the 4200 ckpt unet
logging.info(f"Loading full te and base unet")
text_encoder = CLIPTextModel.from_pretrained(
f"{model_path}/checkpoint-{checkpoint}/text_encoder"
)
pipeline = DiffusionPipeline.from_pretrained(
model_id, text_encoder=text_encoder
)
else:
# Enable the fully-trained unet with the 4200 ckpt text encoder
logging.info(f"Loading full unet and base te")
unet = UNet2DConditionModel.from_pretrained(
f"{model_path}/checkpoint-{checkpoint}/unet"
)
pipeline = DiffusionPipeline.from_pretrained(model_id, unet=unet)
else:
# Do the base model.
logging.info(f"Loading base ckpt.")
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.unet = torch.compile(pipeline.unet)
compel = Compel(
tokenizer=pipeline.tokenizer, text_encoder=pipeline.text_encoder
)
negative_embed = compel.build_conditioning_tensor(negative)
pipeline.scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
rescale_betas_zero_snr=True,
timestep_spacing="trailing",
)
pipeline.to("cuda")
except Exception as e:
logging.info(
f"Could not generate pipeline for checkpoint {checkpoint}: {e}"
)
continue
# Does the file exist already?
import os
for shortname, prompt in prompts.items():
if not os.path.isfile(
f"{output_test_dir}/{shortname}-{checkpoint}_{base_checkpoint_for_unet}{suffix}.png"
):
logging.info(
f"Generating {shortname} at {checkpoint}_{base_checkpoint_for_unet}{suffix}"
)
logging.info(f"Shortname: {shortname}, Prompt: {prompt}")
logging.info(f"Negative: {negative}")
conditioning = compel.build_conditioning_tensor(prompt)
generator = torch.Generator(device="cuda").manual_seed(torch_seed)
output = pipeline(
generator=generator,
negative_prompt_embeds=negative_embed,
prompt_embeds=conditioning,
guidance_scale=7.5,
guidance_rescale=0.0,
width=1152,
height=768,
num_inference_steps=25,
).images[0]
output.save(
f"{output_test_dir}/{shortname}-{checkpoint}_{base_checkpoint_for_unet}{suffix}.png"
)
del output
if save_pretrained and not os.path.exists(f"{model_path}/pipeline"):
logging.info(f"Saving pretrained pipeline.")
pipeline.save_pretrained(
f"{model_path}/pseudo-real", safe_serialization=True
)
elif save_pretrained:
raise Exception("Can not save pretrained model, path already exists.")
logging.info(f"Exit.")