diff --git a/setup.py b/setup.py index bfc9f55..1f7b607 100644 --- a/setup.py +++ b/setup.py @@ -3,7 +3,7 @@ setup( name = 'vit-pytorch', packages = find_packages(exclude=['examples']), - version = '1.5.0', + version = '1.5.1', license='MIT', description = 'Vision Transformer (ViT) - Pytorch', long_description_content_type = 'text/markdown', diff --git a/vit_pytorch/max_vit.py b/vit_pytorch/max_vit.py index 1c76d34..bfeb9b5 100644 --- a/vit_pytorch/max_vit.py +++ b/vit_pytorch/max_vit.py @@ -173,7 +173,7 @@ def forward(self, x): # split heads - q, k, v = map(lambda t: rearrange(t, 'b n (h d ) -> b h n d', h = h), (q, k, v)) + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) # scale diff --git a/vit_pytorch/max_vit_with_registers.py b/vit_pytorch/max_vit_with_registers.py new file mode 100644 index 0000000..a55b580 --- /dev/null +++ b/vit_pytorch/max_vit_with_registers.py @@ -0,0 +1,339 @@ +from functools import partial + +import torch +from torch import nn, einsum +import torch.nn.functional as F +from torch.nn import Module, ModuleList, Sequential + +from einops import rearrange, repeat, reduce, pack, unpack +from einops.layers.torch import Rearrange, Reduce + +# helpers + +def exists(val): + return val is not None + +def default(val, d): + return val if exists(val) else d + +def pack_one(x, pattern): + return pack([x], pattern) + +def unpack_one(x, ps, pattern): + return unpack(x, ps, pattern)[0] + +def cast_tuple(val, length = 1): + return val if isinstance(val, tuple) else ((val,) * length) + +# helper classes + +def FeedForward(dim, mult = 4, dropout = 0.): + inner_dim = int(dim * mult) + return Sequential( + nn.LayerNorm(dim), + nn.Linear(dim, inner_dim), + nn.GELU(), + nn.Dropout(dropout), + nn.Linear(inner_dim, dim), + nn.Dropout(dropout) + ) + +# MBConv + +class SqueezeExcitation(Module): + def __init__(self, dim, shrinkage_rate = 0.25): + super().__init__() + hidden_dim = int(dim * shrinkage_rate) + + self.gate = Sequential( + Reduce('b c h w -> b c', 'mean'), + nn.Linear(dim, hidden_dim, bias = False), + nn.SiLU(), + nn.Linear(hidden_dim, dim, bias = False), + nn.Sigmoid(), + Rearrange('b c -> b c 1 1') + ) + + def forward(self, x): + return x * self.gate(x) + +class MBConvResidual(Module): + def __init__(self, fn, dropout = 0.): + super().__init__() + self.fn = fn + self.dropsample = Dropsample(dropout) + + def forward(self, x): + out = self.fn(x) + out = self.dropsample(out) + return out + x + +class Dropsample(Module): + def __init__(self, prob = 0): + super().__init__() + self.prob = prob + + def forward(self, x): + device = x.device + + if self.prob == 0. or (not self.training): + return x + + keep_mask = torch.FloatTensor((x.shape[0], 1, 1, 1), device = device).uniform_() > self.prob + return x * keep_mask / (1 - self.prob) + +def MBConv( + dim_in, + dim_out, + *, + downsample, + expansion_rate = 4, + shrinkage_rate = 0.25, + dropout = 0. +): + hidden_dim = int(expansion_rate * dim_out) + stride = 2 if downsample else 1 + + net = Sequential( + nn.Conv2d(dim_in, hidden_dim, 1), + nn.BatchNorm2d(hidden_dim), + nn.GELU(), + nn.Conv2d(hidden_dim, hidden_dim, 3, stride = stride, padding = 1, groups = hidden_dim), + nn.BatchNorm2d(hidden_dim), + nn.GELU(), + SqueezeExcitation(hidden_dim, shrinkage_rate = shrinkage_rate), + nn.Conv2d(hidden_dim, dim_out, 1), + nn.BatchNorm2d(dim_out) + ) + + if dim_in == dim_out and not downsample: + net = MBConvResidual(net, dropout = dropout) + + return net + +# attention related classes + +class Attention(Module): + def __init__( + self, + dim, + dim_head = 32, + dropout = 0., + window_size = 7 + ): + super().__init__() + assert (dim % dim_head) == 0, 'dimension should be divisible by dimension per head' + + self.heads = dim // dim_head + self.scale = dim_head ** -0.5 + + self.norm = nn.LayerNorm(dim) + self.to_qkv = nn.Linear(dim, dim * 3, bias = False) + + self.attend = nn.Sequential( + nn.Softmax(dim = -1), + nn.Dropout(dropout) + ) + + self.to_out = nn.Sequential( + nn.Linear(dim, dim, bias = False), + nn.Dropout(dropout) + ) + + # relative positional bias + + self.rel_pos_bias = nn.Embedding((2 * window_size - 1) ** 2, self.heads) + + pos = torch.arange(window_size) + grid = torch.stack(torch.meshgrid(pos, pos, indexing = 'ij')) + grid = rearrange(grid, 'c i j -> (i j) c') + rel_pos = rearrange(grid, 'i ... -> i 1 ...') - rearrange(grid, 'j ... -> 1 j ...') + rel_pos += window_size - 1 + rel_pos_indices = (rel_pos * torch.tensor([2 * window_size - 1, 1])).sum(dim = -1) + + self.register_buffer('rel_pos_indices', rel_pos_indices, persistent = False) + + def forward(self, x): + device, h = x.device, self.heads + + x = self.norm(x) + + # project for queries, keys, values + + q, k, v = self.to_qkv(x).chunk(3, dim = -1) + + # split heads + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) + + # scale + + q = q * self.scale + + # sim + + sim = einsum('b h i d, b h j d -> b h i j', q, k) + + # add positional bias + + bias = self.rel_pos_bias(self.rel_pos_indices) + bias = rearrange(bias, 'i j h -> h i j') + + num_registers = sim.shape[-1] - bias.shape[-1] + bias = F.pad(bias, (num_registers, 0, num_registers, 0), value = 0.) + + sim = sim + bias + + # attention + + attn = self.attend(sim) + + # aggregate + + out = einsum('b h i j, b h j d -> b h i d', attn, v) + + # combine heads out + + out = rearrange(out, 'b h n d -> b n (h d)') + return self.to_out(out) + +class MaxViT(Module): + def __init__( + self, + *, + num_classes, + dim, + depth, + dim_head = 32, + dim_conv_stem = None, + window_size = 7, + mbconv_expansion_rate = 4, + mbconv_shrinkage_rate = 0.25, + dropout = 0.1, + channels = 3, + num_register_tokens = 4 + ): + super().__init__() + assert isinstance(depth, tuple), 'depth needs to be tuple if integers indicating number of transformer blocks at that stage' + + # convolutional stem + + dim_conv_stem = default(dim_conv_stem, dim) + + self.conv_stem = Sequential( + nn.Conv2d(channels, dim_conv_stem, 3, stride = 2, padding = 1), + nn.Conv2d(dim_conv_stem, dim_conv_stem, 3, padding = 1) + ) + + # variables + + num_stages = len(depth) + + dims = tuple(map(lambda i: (2 ** i) * dim, range(num_stages))) + dims = (dim_conv_stem, *dims) + dim_pairs = tuple(zip(dims[:-1], dims[1:])) + + self.layers = nn.ModuleList([]) + + # window size + + self.window_size = window_size + + self.register_tokens = nn.ParameterList([]) + + # iterate through stages + + for ind, ((layer_dim_in, layer_dim), layer_depth) in enumerate(zip(dim_pairs, depth)): + for stage_ind in range(layer_depth): + is_first = stage_ind == 0 + stage_dim_in = layer_dim_in if is_first else layer_dim + + conv = MBConv( + stage_dim_in, + layer_dim, + downsample = is_first, + expansion_rate = mbconv_expansion_rate, + shrinkage_rate = mbconv_shrinkage_rate + ) + + block_attn = Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = window_size) + block_ff = FeedForward(dim = layer_dim, dropout = dropout) + + grid_attn = Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = window_size) + grid_ff = FeedForward(dim = layer_dim, dropout = dropout) + + register_tokens = nn.Parameter(torch.randn(num_register_tokens, layer_dim)) + + self.layers.append(ModuleList([ + conv, + ModuleList([block_attn, block_ff]), + ModuleList([grid_attn, grid_ff]) + ])) + + self.register_tokens.append(register_tokens) + + # mlp head out + + self.mlp_head = nn.Sequential( + Reduce('b d h w -> b d', 'mean'), + nn.LayerNorm(dims[-1]), + nn.Linear(dims[-1], num_classes) + ) + + def forward(self, x): + b, w = x.shape[0], self.window_size + + x = self.conv_stem(x) + + for (conv, (block_attn, block_ff), (grid_attn, grid_ff)), register_tokens in zip(self.layers, self.register_tokens): + x = conv(x) + + # block-like attention + + x = rearrange(x, 'b d (x w1) (y w2) -> b x y w1 w2 d', w1 = w, w2 = w) + + # prepare register tokens + + r = repeat(register_tokens, 'n d -> b x y n d', b = b, x = x.shape[1],y = x.shape[2]) + r, register_batch_ps = pack_one(r, '* n d') + + x, window_ps = pack_one(x, 'b x y * d') + x, batch_ps = pack_one(x, '* n d') + x, register_ps = pack([r, x], 'b * d') + + x = block_attn(x) + x + x = block_ff(x) + x + + r, x = unpack(x, register_ps, 'b * d') + + x = unpack_one(x, batch_ps, '* n d') + x = unpack_one(x, window_ps, 'b x y * d') + x = rearrange(x, 'b x y w1 w2 d -> b d (x w1) (y w2)') + + r = unpack_one(r, register_batch_ps, '* n d') + + # grid-like attention + + x = rearrange(x, 'b d (w1 x) (w2 y) -> b x y w1 w2 d', w1 = w, w2 = w) + + # prepare register tokens + + r = reduce(r, 'b x y n d -> b n d', 'mean') + r = repeat(r, 'b n d -> b x y n d', x = x.shape[1], y = x.shape[2]) + r, register_batch_ps = pack_one(r, '* n d') + + x, window_ps = pack_one(x, 'b x y * d') + x, batch_ps = pack_one(x, '* n d') + x, register_ps = pack([r, x], 'b * d') + + x = grid_attn(x) + x + + r, x = unpack(x, register_ps, 'b * d') + + x = grid_ff(x) + x + + x = unpack_one(x, batch_ps, '* n d') + x = unpack_one(x, window_ps, 'b x y * d') + x = rearrange(x, 'b x y w1 w2 d -> b d (w1 x) (w2 y)') + + return self.mlp_head(x)