-
Notifications
You must be signed in to change notification settings - Fork 642
/
train_dalle.py
676 lines (512 loc) · 23.1 KB
/
train_dalle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
import argparse
from pathlib import Path
import time
from glob import glob
import os
import shutil
import torch
import wandb # Quit early if user doesn't have wandb installed.
from torch.nn.utils import clip_grad_norm_
from torch.optim import Adam
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader
from dalle_pytorch import __version__
from dalle_pytorch import OpenAIDiscreteVAE, VQGanVAE, DiscreteVAE, DALLE
from dalle_pytorch import distributed_utils
from dalle_pytorch.loader import TextImageDataset
from dalle_pytorch.tokenizer import tokenizer, HugTokenizer, ChineseTokenizer, YttmTokenizer
# libraries needed for webdataset support
import webdataset as wds
from torchvision import transforms as T
from PIL import Image
from io import BytesIO
# argument parsing
parser = argparse.ArgumentParser()
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument('--vae_path', type=str,
help='path to your trained discrete VAE')
group.add_argument('--dalle_path', type=str,
help='path to your partially trained DALL-E')
parser.add_argument('--vqgan_model_path', type=str, default = None,
help='path to your trained VQGAN weights. This should be a .ckpt file. (only valid when taming option is enabled)')
parser.add_argument('--vqgan_config_path', type=str, default = None,
help='path to your trained VQGAN config. This should be a .yaml file. (only valid when taming option is enabled)')
parser.add_argument('--image_text_folder', type=str, required=True,
help='path to your folder of images and text for learning the DALL-E')
parser.add_argument('--wds', type = str, default='',
help = 'Comma separated list of WebDataset (1) image and (2) text column names. Must contain 2 values, e.g. img,cap.')
parser.add_argument('--truncate_captions', dest='truncate_captions', action='store_true',
help='Captions passed in which exceed the max token length will be truncated if this is set.')
parser.add_argument('--random_resize_crop_lower_ratio', dest='resize_ratio', type=float, default=0.75,
help='Random resized crop lower ratio')
parser.add_argument('--chinese', dest='chinese', action='store_true')
parser.add_argument('--taming', dest='taming', action='store_true')
parser.add_argument('--hug', dest='hug', action='store_true')
parser.add_argument('--bpe_path', type=str,
help='path to your BPE json file')
parser.add_argument('--dalle_output_file_name', type=str, default = "dalle",
help='output_file_name')
parser.add_argument('--fp16', action='store_true',
help='(experimental) - Enable DeepSpeed 16 bit precision. Reduces VRAM.')
parser.add_argument('--amp', action='store_true',
help='Apex "O1" automatic mixed precision. More stable than 16 bit precision. Can\'t be used in conjunction with deepspeed zero stages 1-3.')
parser.add_argument('--wandb_name', default='dalle_train_transformer',
help='Name W&B will use when saving results.\ne.g. `--wandb_name "coco2017-full-sparse"`')
parser.add_argument('--wandb_entity', default=None,
help='(optional) Name of W&B team/entity to log to.')
parser.add_argument('--stable_softmax', dest='stable_softmax', action='store_true',
help='Prevent values from becoming too large during softmax. Helps with stability in fp16 and Mixture of Quantization training.')
parser = distributed_utils.wrap_arg_parser(parser)
train_group = parser.add_argument_group('Training settings')
train_group.add_argument('--flops_profiler', dest = 'flops_profiler', action='store_true', help = 'Exits after printing detailed flops/runtime analysis of forward/backward')
train_group.add_argument('--epochs', default = 20, type = int, help = 'Number of epochs')
train_group.add_argument('--save_every_n_steps', default = 1000, type = int, help = 'Save a checkpoint every n steps')
train_group.add_argument('--keep_n_checkpoints', default = None, type = int, help = '(Careful) Deletes old deepspeed checkpoints if there are more than n')
train_group.add_argument('--batch_size', default = 4, type = int, help = 'Batch size')
train_group.add_argument('--ga_steps', default = 1, type = int, help = 'Number of steps to accumulate gradients across per each iteration. DeepSpeed only.')
train_group.add_argument('--learning_rate', default = 3e-4, type = float, help = 'Learning rate')
train_group.add_argument('--clip_grad_norm', default = 0.5, type = float, help = 'Clip gradient norm')
train_group.add_argument('--lr_decay', dest = 'lr_decay', action = 'store_true')
model_group = parser.add_argument_group('Model settings')
model_group.add_argument('--dim', default = 512, type = int, help = 'Model dimension')
model_group.add_argument('--text_seq_len', default = 256, type = int, help = 'Text sequence length')
model_group.add_argument('--depth', default = 2, type = int, help = 'Model depth')
model_group.add_argument('--heads', default = 8, type = int, help = 'Model number of heads')
model_group.add_argument('--dim_head', default = 64, type = int, help = 'Model head dimension')
train_group.add_argument('--ff_dropout', default = 0.0, type = float, help = 'Feed forward dropout.')
train_group.add_argument('--attn_dropout', default = 0.0, type = float, help = 'Feed forward dropout.')
model_group.add_argument('--reversible', dest = 'reversible', action='store_true')
model_group.add_argument('--loss_img_weight', default = 7, type = int, help = 'Image loss weight')
model_group.add_argument('--attn_types', default = 'full', type = str, help = 'comma separated list of attention types. attention type can be: full or sparse or axial_row or axial_col or conv_like.')
model_group.add_argument('--shift_tokens', help = 'Use the shift tokens feature', action = 'store_true')
model_group.add_argument('--rotary_emb', help = 'Use rotary embeddings', action = 'store_true')
model_group.add_argument('--shared_attn_ids', default = None, type = str, help = 'Comma separated list of shared attention layer ids. Default: sharing is disabled')
model_group.add_argument('--shared_ff_ids', default = None, type = str, help = 'Comma separated list of shared feed forward layer ids. Default: sharing is disabled')
model_group.add_argument('--share_input_output_emb', help = 'Share input and output embeddings', action = 'store_true')
args = parser.parse_args()
# helpers
def exists(val):
return val is not None
def get_trainable_params(model):
return [params for params in model.parameters() if params.requires_grad]
def cp_path_to_dir(cp_path, tag):
"""Convert a checkpoint path to a directory with `tag` inserted.
If `cp_path` is already a directory, return it unchanged.
"""
if not isinstance(cp_path, Path):
cp_path = Path(cp_path)
if cp_path.is_dir():
return cp_path
path_sans_extension = cp_path.parent / cp_path.stem
cp_dir = Path(f'{path_sans_extension}-{tag}-cp')
return cp_dir
# constants
WEBDATASET_IMAGE_TEXT_COLUMNS = tuple(args.wds.split(','))
ENABLE_WEBDATASET = True if len(WEBDATASET_IMAGE_TEXT_COLUMNS) == 2 else False
DALLE_OUTPUT_FILE_NAME = args.dalle_output_file_name + ".pt"
VAE_PATH = args.vae_path
VQGAN_MODEL_PATH = args.vqgan_model_path
VQGAN_CONFIG_PATH = args.vqgan_config_path
DALLE_PATH = args.dalle_path
RESUME = exists(DALLE_PATH)
EPOCHS = args.epochs
BATCH_SIZE = args.batch_size
LEARNING_RATE = args.learning_rate
GRAD_CLIP_NORM = args.clip_grad_norm
LR_DECAY = args.lr_decay
SAVE_EVERY_N_STEPS = args.save_every_n_steps
KEEP_N_CHECKPOINTS = args.keep_n_checkpoints
MODEL_DIM = args.dim
TEXT_SEQ_LEN = args.text_seq_len
DEPTH = args.depth
HEADS = args.heads
DIM_HEAD = args.dim_head
REVERSIBLE = args.reversible
LOSS_IMG_WEIGHT = args.loss_img_weight
FF_DROPOUT = args.ff_dropout
ATTN_DROPOUT = args.attn_dropout
STABLE = args.stable_softmax
SHIFT_TOKENS = args.shift_tokens
ROTARY_EMB = args.rotary_emb
ATTN_TYPES = tuple(args.attn_types.split(','))
SHARED_ATTN_IDS = tuple(args.shared_attn_ids.split(',')) if exists(args.shared_attn_ids) else None
SHARED_FF_IDS = tuple(args.shared_ff_ids.split(',')) if exists(args.shared_ff_ids) else None
SHARE_INPUT_OUTPUT_EMB = args.share_input_output_emb
DEEPSPEED_CP_AUX_FILENAME = 'auxiliary.pt'
if not ENABLE_WEBDATASET:
# quit early if you used the wrong folder name
assert Path(args.image_text_folder).exists(), f'The path {args.image_text_folder} was not found.'
else:
# quit early if no tar files were found
if Path(args.image_text_folder).is_dir():
DATASET = [str(p) for p in Path(args.image_text_folder).glob("**/*") if ".tar" in str(p).lower()] # .name
assert len(DATASET) > 0, 'The directory ({}) does not contain any WebDataset/.tar files.'.format(args.image_text_folder)
print('Found {} WebDataset .tar(.gz) file(s) under given path {}!'.format(len(DATASET), args.image_text_folder))
elif ('http://' in args.image_text_folder.lower()) | ('https://' in args.image_text_folder.lower()):
DATASET = f"pipe:curl -L -s {args.image_text_folder} || true"
print('Found {} http(s) link under given path!'.format(len(DATASET), args.image_text_folder))
elif 'gs://' in args.image_text_folder.lower():
DATASET = f"pipe:gsutil cat {args.image_text_folder} || true"
print('Found {} GCS link under given path!'.format(len(DATASET), args.image_text_folder))
elif '.tar' in args.image_text_folder:
DATASET = args.image_text_folder
print('Found WebDataset .tar(.gz) file under given path {}!'.format(args.image_text_folder))
else:
raise Exception('No folder, no .tar(.gz) and no url pointing to tar files provided under {}.'.format(args.image_text_folder))
# initialize distributed backend
distr_backend = distributed_utils.set_backend_from_args(args)
distr_backend.initialize()
using_deepspeed = \
distributed_utils.using_backend(distributed_utils.DeepSpeedBackend)
is_root = distr_backend.is_root_worker()
# tokenizer
if exists(args.bpe_path):
klass = HugTokenizer if args.hug else YttmTokenizer
tokenizer = klass(args.bpe_path)
elif args.chinese:
tokenizer = ChineseTokenizer()
# reconstitute vae
if RESUME:
dalle_path = Path(DALLE_PATH)
if using_deepspeed:
cp_dir = cp_path_to_dir(dalle_path, 'ds')
assert cp_dir.is_dir(), \
f'DeepSpeed checkpoint directory {cp_dir} not found'
dalle_path = cp_dir / DEEPSPEED_CP_AUX_FILENAME
else:
assert dalle_path.exists(), 'DALL-E model file does not exist'
loaded_obj = torch.load(str(dalle_path), map_location='cpu')
dalle_params, vae_params, weights = loaded_obj['hparams'], loaded_obj['vae_params'], loaded_obj['weights']
opt_state = loaded_obj.get('opt_state')
scheduler_state = loaded_obj.get('scheduler_state')
if vae_params is not None:
vae = DiscreteVAE(**vae_params)
elif args.taming:
vae = VQGanVAE(VQGAN_MODEL_PATH, VQGAN_CONFIG_PATH)
else:
vae = OpenAIDiscreteVAE()
resume_epoch = loaded_obj.get('epoch', 0)
else:
if exists(VAE_PATH):
vae_path = Path(VAE_PATH)
assert vae_path.exists(), 'VAE model file does not exist'
assert not vae_path.is_dir(), \
('Cannot load VAE model from directory; please use a '
'standard *.pt checkpoint. '
'Currently, merging a DeepSpeed-partitioned VAE into a DALLE '
'model is not supported.')
loaded_obj = torch.load(str(vae_path))
vae_params, weights = loaded_obj['hparams'], loaded_obj['weights']
vae = DiscreteVAE(**vae_params)
vae.load_state_dict(weights)
else:
if is_root:
print('using pretrained VAE for encoding images to tokens')
vae_params = None
if args.taming:
vae = VQGanVAE(VQGAN_MODEL_PATH, VQGAN_CONFIG_PATH)
else:
vae = OpenAIDiscreteVAE()
dalle_params = dict(
num_text_tokens=tokenizer.vocab_size,
text_seq_len=TEXT_SEQ_LEN,
dim=MODEL_DIM,
depth=DEPTH,
heads=HEADS,
dim_head=DIM_HEAD,
reversible=REVERSIBLE,
loss_img_weight=LOSS_IMG_WEIGHT,
attn_types=ATTN_TYPES,
ff_dropout=FF_DROPOUT,
attn_dropout=ATTN_DROPOUT,
stable=STABLE,
shift_tokens=SHIFT_TOKENS,
rotary_emb=ROTARY_EMB,
shared_attn_ids=SHARED_ATTN_IDS,
shared_ff_ids=SHARED_FF_IDS,
share_input_output_emb=SHARE_INPUT_OUTPUT_EMB,
)
resume_epoch = 0
IMAGE_SIZE = vae.image_size
CHANNELS = vae.channels
TRANSPARENT = CHANNELS == 4
IMAGE_MODE = 'RGBA' if CHANNELS == 4 else 'RGB'
# configure OpenAI VAE for float16s
if isinstance(vae, OpenAIDiscreteVAE) and args.fp16:
vae.enc.blocks.output.conv.use_float16 = True
# helpers
def group_weight(model):
group_decay, group_no_decay = [], []
for params in model.named_parameters():
if 'transformer' in params[0]:
if 'bias' in params[0] or 'norm' in params[0]:
group_no_decay.append(params[1])
continue
group_decay.append(params[1])
assert len(list(model.parameters())) == len(group_decay) + len(group_no_decay)
groups = [dict(params=group_decay), dict(params=group_no_decay, weight_decay=.0)]
return groups
# create dataset and dataloader
is_shuffle = not distributed_utils.using_backend(distributed_utils.HorovodBackend)
imagepreproc = T.Compose([
T.Lambda(lambda img: img.convert(IMAGE_MODE)
if img.mode != IMAGE_MODE else img),
T.RandomResizedCrop(IMAGE_SIZE,
scale=(args.resize_ratio, 1.),
ratio=(1., 1.)),
T.ToTensor(),
])
def imagetransform(b):
return Image.open(BytesIO(b))
def tokenize(s):
return tokenizer.tokenize(
s.decode('utf-8'),
TEXT_SEQ_LEN,
truncate_text=args.truncate_captions).squeeze(0)
if ENABLE_WEBDATASET:
DATASET_SIZE = int(1e9) # You need to set a nominal length for the Dataset in order to avoid warnings from DataLoader
myimg, mycap = WEBDATASET_IMAGE_TEXT_COLUMNS
image_text_mapping = {
myimg: imagetransform,
mycap: tokenize
}
image_mapping = {
myimg: imagepreproc
}
def filter_dataset(item): # For e.g. C@H which (rarely) has no caption available.
if mycap not in item:
return False
if myimg not in item:
return False
return True
w_dataset = wds.WebDataset(DATASET, handler=wds.warn_and_continue)
filtered_dataset = w_dataset.select(filter_dataset)
ds = filtered_dataset.map_dict(**image_text_mapping).map_dict(**image_mapping).to_tuple(mycap, myimg).batched(BATCH_SIZE / distr_backend.get_world_size(), partial=True)
else:
ds = TextImageDataset(
args.image_text_folder,
text_len=TEXT_SEQ_LEN,
image_size=IMAGE_SIZE,
transparent=TRANSPARENT,
resize_ratio=args.resize_ratio,
truncate_captions=args.truncate_captions,
tokenizer=tokenizer,
shuffle=is_shuffle,
)
assert len(ds) > 0, 'dataset is empty'
if is_root:
if not ENABLE_WEBDATASET:
print(f'{len(ds)} image-text pairs found for training')
# data sampler
data_sampler = None
if not is_shuffle:
data_sampler = torch.utils.data.distributed.DistributedSampler(
ds,
num_replicas=distr_backend.get_world_size(),
rank=distr_backend.get_rank()
)
# WebLoader for WebDataset and DeepSpeed compatibility
if ENABLE_WEBDATASET:
dl = wds.WebLoader(ds, batch_size=None, shuffle=False, num_workers=4) # optionally add num_workers=2 (n) argument
number_of_batches = DATASET_SIZE // (BATCH_SIZE * distr_backend.get_world_size())
dl = dl.slice(number_of_batches)
dl.length = number_of_batches
else:
# Regular DataLoader for image-text-folder datasets
dl = DataLoader(ds, batch_size=BATCH_SIZE, shuffle=is_shuffle, drop_last=True, sampler=data_sampler)
# initialize DALL-E
dalle = DALLE(vae=vae, **dalle_params)
if not using_deepspeed:
if args.fp16:
dalle = dalle.half()
dalle = dalle.cuda()
if RESUME and not using_deepspeed:
dalle.load_state_dict(weights)
# optimizer
opt = Adam(get_trainable_params(dalle), lr=LEARNING_RATE)
if RESUME and opt_state:
opt.load_state_dict(opt_state)
# scheduler
scheduler = None
if LR_DECAY:
scheduler = ReduceLROnPlateau(
opt,
mode="min",
factor=0.5,
patience=10,
cooldown=10,
min_lr=1e-6,
verbose=True,
)
if RESUME and scheduler_state:
scheduler.load_state_dict(scheduler_state)
# experiment tracker
if is_root:
model_config = dict(
depth=DEPTH,
heads=HEADS,
dim_head=DIM_HEAD
)
run = wandb.init(
project=args.wandb_name,
entity=args.wandb_entity,
resume=False,
config=model_config,
)
# distribute
distr_backend.check_batch_size(BATCH_SIZE)
deepspeed_config = {
'train_batch_size': BATCH_SIZE,
'gradient_accumulation_steps': args.ga_steps,
'gradient_clipping': GRAD_CLIP_NORM,
'fp16': {
'enabled': args.fp16,
},
'amp': {
'enabled': args.amp,
'opt_level': 'O1',
},
"flops_profiler": {
"enabled": args.flops_profiler,
"profile_step": 200,
"module_depth": -1,
"top_modules": 1,
"detailed": True,
"output_file": None # TODO Can't get this to work.
},
}
if deepspeed_config.get('zero_optimization', {}).get('stage', 0) >= 2:
print(f"Checkpoints made with DeepSpeed ZeRO Stages 2 and 3 will be stored in deepspeed checkpoint folder")
print(f"As such, they will require DeepSpeed as a dependency in order to resume from or generate with.")
print("See the deespeed conversion script for details on how to convert your ZeRO stage 2/3 checkpoint to a single file.")
print("If using a single GPU, consider running with apex automatic mixed precision instead for a similar speedup to ZeRO.")
time.sleep(2)
(distr_dalle, distr_opt, distr_dl, distr_scheduler) = distr_backend.distribute(
args=args,
model=dalle,
optimizer=opt,
model_parameters=get_trainable_params(dalle),
training_data=(
(None if ENABLE_WEBDATASET else ds)
if using_deepspeed
else dl
),
# Do not pass the LR scheduler to DeepSpeed so we can manually
# advance it.
lr_scheduler=scheduler if LR_DECAY and not using_deepspeed else None,
config_params=deepspeed_config,
)
# Prefer scheduler in `deepspeed_config`.
if LR_DECAY and distr_scheduler is None:
distr_scheduler = scheduler
avoid_model_calls = using_deepspeed and args.fp16
if RESUME and using_deepspeed:
distr_dalle.load_checkpoint(str(cp_dir))
def save_model(path, epoch=0):
save_obj = {
'hparams': dalle_params,
'vae_params': vae_params,
'epoch': epoch,
'version': __version__,
'vae_class_name': vae.__class__.__name__
}
if using_deepspeed:
cp_dir = cp_path_to_dir(path, 'ds')
if KEEP_N_CHECKPOINTS is not None and is_root:
checkpoints = sorted(glob(str(cp_dir / "global*")), key=os.path.getmtime, reverse=True)
for checkpoint in checkpoints[KEEP_N_CHECKPOINTS:]:
shutil.rmtree(checkpoint)
distr_dalle.save_checkpoint(cp_dir, client_state=save_obj)
if not is_root:
return
# Save auxiliary values so we can reuse the standard routine
# for loading.
save_obj = {
**save_obj,
# Save a nonsense value that directs the user to
# further help.
'weights': (
'To get a working standard checkpoint, '
'look into consolidating DeepSpeed checkpoints.'
),
}
torch.save(save_obj, str(cp_dir / DEEPSPEED_CP_AUX_FILENAME))
if deepspeed_config.get('zero_optimization', {}).get('stage', 0) >= 2: # see https://github.com/lucidrains/DALLE-pytorch/wiki/DeepSpeed-Checkpoints
return
if not is_root:
return
save_obj = {
**save_obj,
'weights': dalle.state_dict(),
'opt_state': opt.state_dict(),
'scheduler_state': (scheduler.state_dict() if scheduler else None)
}
torch.save(save_obj, path)
def save_artifact(model_config, model_path, name = 'trained-dalle'):
model_artifact = wandb.Artifact(name, type='model', metadata=dict(model_config))
model_artifact.add_file(model_path)
run.log_artifact(model_artifact)
# training
# Saves a checkpoint before training begins to fail early when mis-configured.
# See https://github.com/lucidrains/DALLE-pytorch/wiki/DeepSpeed-Checkpoints
save_model(DALLE_OUTPUT_FILE_NAME, epoch=resume_epoch)
for epoch in range(resume_epoch, EPOCHS):
if data_sampler:
data_sampler.set_epoch(epoch)
for i, (text, images) in enumerate((dl if ENABLE_WEBDATASET else distr_dl)):
if i % 10 == 0 and is_root:
t = time.time()
if args.fp16:
images = images.half()
text, images = map(lambda t: t.cuda(), (text, images))
loss = distr_dalle(text, images, return_loss=True)
if using_deepspeed:
distr_dalle.backward(loss)
distr_dalle.step()
# Gradients are automatically zeroed after the step
else:
loss.backward()
clip_grad_norm_(distr_dalle.parameters(), GRAD_CLIP_NORM)
distr_opt.step()
distr_opt.zero_grad()
# Collective loss, averaged
avg_loss = distr_backend.average_all(loss)
log = {}
if i % 10 == 0 and is_root:
print(epoch, i, f'loss - {avg_loss.item()}')
log = {
**log,
'epoch': epoch,
'iter': i,
'loss': avg_loss.item()
}
if i % SAVE_EVERY_N_STEPS == 0:
save_model(DALLE_OUTPUT_FILE_NAME, epoch=epoch)
if i % 100 == 0 and is_root:
sample_text = text[:1]
token_list = sample_text.masked_select(sample_text != 0).tolist()
decoded_text = tokenizer.decode(token_list)
if not avoid_model_calls:
# CUDA index errors when we don't guard this
image = dalle.generate_images(text[:1], filter_thres=0.9) # topk sampling at 0.9
if not avoid_model_calls:
log['image'] = wandb.Image(image, caption=decoded_text)
if i % 10 == 9 and is_root:
sample_per_sec = BATCH_SIZE * 10 / (time.time() - t)
log["sample_per_sec"] = sample_per_sec
print(epoch, i, f'sample_per_sec - {sample_per_sec}')
if i == 201 and args.flops_profiler:
raise StopIteration("Profiler has finished running. Stopping training early.")
if is_root:
wandb.log(log)
if LR_DECAY:
distr_scheduler.step(avg_loss)
save_model(DALLE_OUTPUT_FILE_NAME, epoch=epoch)
if is_root:
# save trained model to wandb as an artifact every epoch's end
save_artifact(model_config, DALLE_OUTPUT_FILE_NAME)
save_model(DALLE_OUTPUT_FILE_NAME, epoch=epoch)
if is_root:
wandb.save(DALLE_OUTPUT_FILE_NAME)
save_artifact(model_config, DALLE_OUTPUT_FILE_NAME)
wandb.finish()