-
-
Notifications
You must be signed in to change notification settings - Fork 76
/
embeddings.py
226 lines (196 loc) · 9.88 KB
/
embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch
import torch.nn as nn
import numpy as np
from typing import Tuple, Union, Optional
from diffusers.models.embeddings import get_3d_sincos_pos_embed, get_1d_rotary_pos_embed
class CogVideoXPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 2,
patch_size_t: Optional[int] = None,
in_channels: int = 16,
embed_dim: int = 1920,
text_embed_dim: int = 4096,
bias: bool = True,
sample_width: int = 90,
sample_height: int = 60,
sample_frames: int = 49,
temporal_compression_ratio: int = 4,
max_text_seq_length: int = 226,
spatial_interpolation_scale: float = 1.875,
temporal_interpolation_scale: float = 1.0,
use_positional_embeddings: bool = True,
use_learned_positional_embeddings: bool = True,
) -> None:
super().__init__()
self.patch_size = patch_size
self.patch_size_t = patch_size_t
self.embed_dim = embed_dim
self.sample_height = sample_height
self.sample_width = sample_width
self.sample_frames = sample_frames
self.temporal_compression_ratio = temporal_compression_ratio
self.max_text_seq_length = max_text_seq_length
self.spatial_interpolation_scale = spatial_interpolation_scale
self.temporal_interpolation_scale = temporal_interpolation_scale
self.use_positional_embeddings = use_positional_embeddings
self.use_learned_positional_embeddings = use_learned_positional_embeddings
if patch_size_t is None:
# CogVideoX 1.0 checkpoints
self.proj = nn.Conv2d(
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
)
else:
# CogVideoX 1.5 checkpoints
self.proj = nn.Linear(in_channels * patch_size * patch_size * patch_size_t, embed_dim)
self.text_proj = nn.Linear(text_embed_dim, embed_dim)
if use_positional_embeddings or use_learned_positional_embeddings:
persistent = use_learned_positional_embeddings
pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames)
self.register_buffer("pos_embedding", pos_embedding, persistent=persistent)
def _get_positional_embeddings(self, sample_height: int, sample_width: int, sample_frames: int) -> torch.Tensor:
post_patch_height = sample_height // self.patch_size
post_patch_width = sample_width // self.patch_size
post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1
num_patches = post_patch_height * post_patch_width * post_time_compression_frames
pos_embedding = get_3d_sincos_pos_embed(
self.embed_dim,
(post_patch_width, post_patch_height),
post_time_compression_frames,
self.spatial_interpolation_scale,
self.temporal_interpolation_scale,
)
pos_embedding = torch.from_numpy(pos_embedding).flatten(0, 1)
joint_pos_embedding = torch.zeros(
1, self.max_text_seq_length + num_patches, self.embed_dim, requires_grad=False
)
joint_pos_embedding.data[:, self.max_text_seq_length :].copy_(pos_embedding)
return joint_pos_embedding
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
r"""
Args:
text_embeds (`torch.Tensor`):
Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim).
image_embeds (`torch.Tensor`):
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
"""
text_embeds = self.text_proj(text_embeds)
batch_size, num_frames, channels, height, width = image_embeds.shape
if self.patch_size_t is None:
image_embeds = image_embeds.reshape(-1, channels, height, width)
image_embeds = self.proj(image_embeds)
image_embeds = image_embeds.view(batch_size, num_frames, *image_embeds.shape[1:])
image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels]
image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels]
else:
p = self.patch_size
p_t = self.patch_size_t
image_embeds = image_embeds.permute(0, 1, 3, 4, 2)
image_embeds = image_embeds.reshape(
batch_size, num_frames // p_t, p_t, height // p, p, width // p, p, channels
)
image_embeds = image_embeds.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(4, 7).flatten(1, 3)
image_embeds = self.proj(image_embeds)
embeds = torch.cat(
[text_embeds, image_embeds], dim=1
).contiguous() # [batch, seq_length + num_frames x height x width, channels]
if self.use_positional_embeddings or self.use_learned_positional_embeddings:
if self.use_learned_positional_embeddings and (self.sample_width != width or self.sample_height != height):
raise ValueError(
"It is currently not possible to generate videos at a different resolution that the defaults. This should only be the case with 'THUDM/CogVideoX-5b-I2V'."
"If you think this is incorrect, please open an issue at https://github.com/huggingface/diffusers/issues."
)
pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1
if (
self.sample_height != height
or self.sample_width != width
or self.sample_frames != pre_time_compression_frames
):
pos_embedding = self._get_positional_embeddings(height, width, pre_time_compression_frames)
pos_embedding = pos_embedding.to(embeds.device, dtype=embeds.dtype)
else:
pos_embedding = self.pos_embedding
embeds = embeds + pos_embedding
return embeds
def get_3d_rotary_pos_embed(
embed_dim,
crops_coords,
grid_size,
temporal_size,
theta: int = 10000,
use_real: bool = True,
grid_type: str = "linspace",
max_size: Optional[Tuple[int, int]] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
RoPE for video tokens with 3D structure.
Args:
embed_dim: (`int`):
The embedding dimension size, corresponding to hidden_size_head.
crops_coords (`Tuple[int]`):
The top-left and bottom-right coordinates of the crop.
grid_size (`Tuple[int]`):
The grid size of the spatial positional embedding (height, width).
temporal_size (`int`):
The size of the temporal dimension.
theta (`float`):
Scaling factor for frequency computation.
grid_type (`str`):
Whether to use "linspace" or "slice" to compute grids.
Returns:
`torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
"""
if use_real is not True:
raise ValueError(" `use_real = False` is not currently supported for get_3d_rotary_pos_embed")
if grid_type == "linspace":
start, stop = crops_coords
grid_size_h, grid_size_w = grid_size
grid_h = np.linspace(start[0], stop[0], grid_size_h, endpoint=False, dtype=np.float32)
grid_w = np.linspace(start[1], stop[1], grid_size_w, endpoint=False, dtype=np.float32)
grid_t = np.arange(temporal_size, dtype=np.float32)
grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32)
elif grid_type == "slice":
max_h, max_w = max_size
grid_size_h, grid_size_w = grid_size
grid_h = np.arange(max_h, dtype=np.float32)
grid_w = np.arange(max_w, dtype=np.float32)
grid_t = np.arange(temporal_size, dtype=np.float32)
else:
raise ValueError("Invalid value passed for `grid_type`.")
# Compute dimensions for each axis
dim_t = embed_dim // 4
dim_h = embed_dim // 8 * 3
dim_w = embed_dim // 8 * 3
# Temporal frequencies
freqs_t = get_1d_rotary_pos_embed(dim_t, grid_t, use_real=True)
# Spatial frequencies for height and width
freqs_h = get_1d_rotary_pos_embed(dim_h, grid_h, use_real=True)
freqs_w = get_1d_rotary_pos_embed(dim_w, grid_w, use_real=True)
# BroadCast and concatenate temporal and spaial frequencie (height and width) into a 3d tensor
def combine_time_height_width(freqs_t, freqs_h, freqs_w):
freqs_t = freqs_t[:, None, None, :].expand(
-1, grid_size_h, grid_size_w, -1
) # temporal_size, grid_size_h, grid_size_w, dim_t
freqs_h = freqs_h[None, :, None, :].expand(
temporal_size, -1, grid_size_w, -1
) # temporal_size, grid_size_h, grid_size_2, dim_h
freqs_w = freqs_w[None, None, :, :].expand(
temporal_size, grid_size_h, -1, -1
) # temporal_size, grid_size_h, grid_size_2, dim_w
freqs = torch.cat(
[freqs_t, freqs_h, freqs_w], dim=-1
) # temporal_size, grid_size_h, grid_size_w, (dim_t + dim_h + dim_w)
freqs = freqs.view(
temporal_size * grid_size_h * grid_size_w, -1
) # (temporal_size * grid_size_h * grid_size_w), (dim_t + dim_h + dim_w)
return freqs
t_cos, t_sin = freqs_t # both t_cos and t_sin has shape: temporal_size, dim_t
h_cos, h_sin = freqs_h # both h_cos and h_sin has shape: grid_size_h, dim_h
w_cos, w_sin = freqs_w # both w_cos and w_sin has shape: grid_size_w, dim_w
if grid_type == "slice":
t_cos, t_sin = t_cos[:temporal_size], t_sin[:temporal_size]
h_cos, h_sin = h_cos[:grid_size_h], h_sin[:grid_size_h]
w_cos, w_sin = w_cos[:grid_size_w], w_sin[:grid_size_w]
cos = combine_time_height_width(t_cos, h_cos, w_cos)
sin = combine_time_height_width(t_sin, h_sin, w_sin)
return cos, sin