Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ragged Tensors #18414

Open
PatReis opened this issue Aug 28, 2023 · 9 comments
Open

Ragged Tensors #18414

PatReis opened this issue Aug 28, 2023 · 9 comments
Assignees
Labels
stat:awaiting keras-eng Awaiting response from Keras engineer type:support User is asking for help / asking an implementation question. Stackoverflow would be better suited.

Comments

@PatReis
Copy link
Contributor

PatReis commented Aug 28, 2023

Hello,

thanks for the wonderful work on Keras-Core.
I saw the issue #18420 and #18467 and wanted to ask about the ideas/roadmap to support ragged tensors.
Will there be a possibilty to pass a KerasRaggedTensor to layers and models, of course without the support of ragged operations across backends ? To become compatible with tf.keras ? Just to feed a ragged shaped tensor to model or layers without having to resort to padding...
I know that this is probably a lot of work, so I just wanted to know in order to plan ahead for myself.

Best regards

@sachinprasadhs sachinprasadhs added the type:support User is asking for help / asking an implementation question. Stackoverflow would be better suited. label Aug 29, 2023
@sachinprasadhs sachinprasadhs self-assigned this Aug 29, 2023
@fchollet
Copy link
Collaborator

Report from the other thread:

We might support RaggedTensor in the future with the TF backend specifically (such a feature does not exist with other frameworks).

However if you're just looking to have a dynamic data dimension, then you can do it just by:

  • Bucketing your samples into buckets of shape (batch, A, ...), (batch, B, ...), etc. and creating batches out of the buckets, so that each batch is rectangular
  • Padding/truncating your samples to a shared shape
  • Some combination of the two

In general it is possible to handle any workflow using rectangular tensors. RaggedTensors are a convenience but not a blocker.

@PatReis
Copy link
Contributor Author

PatReis commented Aug 30, 2023

@fchollet Thank you very much, you can close this issue then.

Just one last questions:

So my worries are that back then, you were not able to feed a keras model inputs of shape let's say (32, 128) and (64, 64, 64) but they need all to have the same first (batch) dimension, which I think is related to distributed training.
For me, my question was only related to the input batch dimension. I personally do not need ragged operations or the actual features of the ragged tensors.

However, I must check whether keras-core behaves still the same.

So it was very handy to use ragged tensor for model input to get a fixed batch dimension but otherwise flexible shape.
Do you think it would be possible to have as a minimum a Input(ragged=True) layer that takes ragged input and can be used as graph entry but then just returns the inner parts as keras tensors like values and nested splits?
Because for example with tf.data the .ragged_batch(batch_size) was very handy to compile ragged tensor input.

But yes, I understand that you can use padded or bucketed data, which is fine I guess, but a little overhead even if decomposed in the first layer.

@sachinprasadhs sachinprasadhs added the stat:awaiting keras-eng Awaiting response from Keras engineer label Aug 30, 2023
@fchollet fchollet transferred this issue from keras-team/keras-core Sep 22, 2023
@swamidass
Copy link

I also need ragged arrays in keras, or equivalent functionality to feed awkward data. This is critical not out for NLP but also for graph networks.

The key pain point is that the fit method comes with a strong assumption that all the input arrays contain data for all the input examples, partitioned by the first axis. But ragged arrays encoded break this a

It's true that only tf technically supports ragged. But keras could and should support a limited implementation of a cross-backend composite array type that stores a ragged (batch, ragged_dim, ...) array a row_length array (batch, ragged_shape) and a values array (value_id, ...). Using this encoding the GNN libraries (see DGL, jraph, tensorflow_gnn) have been able to get a workable situation.

Without having this implemented directly in keras-level composite array type, it would be very difficult to get this work because of the strong shape assumptions being made by keras.

Now perhaps there is already a way to make keras-level composite arrays? If so, maybe there is a work around?

@PatReis
Copy link
Contributor Author

PatReis commented Oct 30, 2023

@swamidass
So I am currently trying to port my old keras graph library (https://github.com/aimat-lab/gcnn_keras/tree/master) to keras 3.0. And I decided to use disjoint implementation of PyTorch Geometric as main graph representation.
I think jraph and DGL use it too.
This can be realized as there is not restriction on tensors between layers.
It seems to work to pass ragged tensors to keras 3.0 models already. Although a ragged kwarg in Input layer would be great for backward compatibilty.
So I ended up to simply decompose them in the first layer and continue with normal disjoint tensors (tested in tensorflow only yet).
For jax however you would have to use a loader either PyTorch data loader or tf.data to load disjoint with padded and fixed size into the model. I have not tested this yet. For Jax, bucketing and padding is the only way I think. But I believe that padded disjoint with a dummy graph at padded index would not yield a great performance reduction.

@swamidass
Copy link

For Jax, it is easiest because there are no constraints. For performance reasons, you do want to pad to consistent sizes, and Jraph has a simple function to accomplish this. Nonetheless, the input tensors have different sizes leading dimensions regardless.

@PatReis, how are you managing loading batches into keras fit? Or are you jut avoiding keras fit and writing your own training function?

@PatReis
Copy link
Contributor Author

PatReis commented Nov 13, 2023

@swamidass
No, I am still working on the port to keras 3 and everything is experimental at the moment. But here is an example on how you could realize loading with keras fit and future kgcnn package:

https://github.com/aimat-lab/gcnn_keras/blob/master/docs/source/models.ipynb
or
https://github.com/aimat-lab/gcnn_keras/blob/master/notebooks/tutorial_model_loading_options.ipynb

You can not really use ragged tensors becaus of ops.convert_to_tensor() but you can disassemble ragged tensors in the first layer. That I think works.

@shkarupa-alex
Copy link
Contributor

+1 to restore ragged tensors support

@swamidass
Copy link

What is the current status of keras and ragged tensors?

@CtrlShanya
Copy link

I would also like to know, especially for ragged tensor support in Conv layers!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
stat:awaiting keras-eng Awaiting response from Keras engineer type:support User is asking for help / asking an implementation question. Stackoverflow would be better suited.
Projects
None yet
Development

No branches or pull requests

6 participants