Skip to content

Latest commit

 

History

History
330 lines (312 loc) · 50.1 KB

tables.md

File metadata and controls

330 lines (312 loc) · 50.1 KB

Units

Table of Units

Quantity Category Dimension Name Symbol Conversion
length SI, base L metre m (base unit)
extra astronomical unit AU 1 AU = 149 597 870 700 m
extra parsec pc 1 pc = (648 000/π) au = 3.085 678...×10¹⁶ m
extra lightyear lyr 1 lyr = c × 365.25 d = 9 460 730 472 580 800 m
extra atomic unit of length, bohr a₀ 1 a₀ = 0.529 177 2108(18)×10⁻¹⁰ m
extra ångström Å 1 Å = 10⁻¹⁰ m
imperial nautical mile M 1 M = 1852 m
imperial mile, international mile mi 1 mi = 5280 ft = 1609.344 m
imperial yard yd 1 yd = 0.9144 m
imperial international foot ', ft 1 ft = 0.3048 m
imperial inch ", in 39.37 in = 1 m
mass SI, base M kilogram kg (base unit)
SI tonne, metric ton t 1 t = 10³ kg
extra dalton Da 1 Da = 1.660 538 86(28)×10⁻²⁷ kg
extra unified atomic mass unit u 1 u = 1 Da
extra natural unit of mass m_e 1 m_e = 9.109 3826(16)×10⁻³¹ kg
extra earth mass M_Earth 1 M_Earth (see table)
extra jupiter mass M_Jupiter 1 M_Jupiter (see table)
extra solar mass M_Sun 1 M_Sun (see table)
imperial photometric carat carat 1 carat = 2×10⁻⁴ kg
imperial pound lb 1 lb = 4.535 923 7×10⁻¹ kg
imperial ounce oz 1 oz = 2.834 952×10⁻² kg
time, duration SI, base T second s (base unit)
SI minute min 1 min = 60 s
SI hour h 1 h = 60 min = 3 600 s
SI day d 1 d = 24 h = 86 400 s
SI week w 1 w = 7 d = 604 800 s
SI calendar month 1 calendar month = 30 d = 2 592 000 s
SI calendar year 1 calendar yr = 365.25 d = 3.155 760×10⁷ s
SI (gregorian) month 1 month = 1/12 yr = 2629746 s
SI (gregorian) year yr 1 yr = 365.25 d = 3.155 695 2×10⁷ s
extra sidereal year 1 sidereal year = 3.155 815×10⁷ s
extra tropical year 1 tropical year = 3.155 693×10⁷ s
extra natural unit of time ħ/(m_e c²) 1 ħ/(m_e c²) = 1.288 088 6677(86)×10⁻²¹ s
extra atomic unit of time ħ/Eh 1 ħ/Eh = 2.418 884 326 505(16)×10⁻¹⁷ s
electric current SI, base I ampere A (base unit)
thermodynamic temperature SI, base Θ kelvin K (base unit)
SI degree Celsius °C T/K = t/°C + 273.15
imperial degree Fahrenheit °F T/K = (t/°F - 459.67)/1.8
imperial degree Rankine °R T/K = (t/°R)/1.8, T/°F = t/°R + 459.67
amount of substance SI, base N mole mol (base unit)
luminous intensity SI, base J candela cd (base unit)
area SI square metre 1 m²
SI hectare ha 1 ha = 10⁴ m²
extra are a 1 a = 10² m²
imperial barn b 1 b = 10⁻²⁸ m²
imperial acre A 1 A =
imperial international acre ac 1 ac =
volume SI cubic metre 1 m³
SI litre l 1 l = 10⁻³ m³
speed, velocity SI L T⁻¹ metre per second 1 m/s
SI kilometre per hour 1 km/h = (1000/3600) m/s
extra natural unit of speed c 1 c = 299 792 458 m/s (exact)
imperial knot (nautical mile per hour) kn 1 M/h = 1852/3600 m/s
acceleration SI L T⁻² metre per second squared 1 m/s²
CGS galileo Gal 1 Gal = 10⁻² m s⁻²
imperial standard gravity g 1 g = 9.806 65 m/s²
wavenumber SI L⁻¹ reciprocal metre 1 m⁻¹
density, mass density, mass concentration SI L⁻³ M kilogram per cubic metre 1 kg/m³
surface density, area density SI L⁻² M kilogram per square metre 1 kg/m²
specific volume SI L³ M⁻¹ cubic metre per kilogram 1 m³/kg
current density SI L⁻² I ampere per square metre 1 A/m²
magnetic field strength, magnetization SI L⁻¹ I ampere per metre 1 A/m
CGS œrsted Oe 1 Oe = (10³/4π) A m⁻¹
amount concentration, concentration, molar concentration SI L⁻³ N mole per cubic metre 1 mol/m³
luminance SI L⁻² J candela per square metre 1 cd/m²
CGS stilb sb 1 sb = 10⁴ cd m⁻²
refractive index removed 1 one 1
relative permeability removed 1 one 1
angle, plane angle SI, base A radian rad 1 rad = 1 m/m (base unit)
SI degree ° 1 ° = (π/ 180) rad
SI minute, arcminute ', amin 1 ' = (π/ 10 800) rad
SI second, arcsecond ", as 1 " = (π/648 000) rad
extra gon, grad gon 1 gon = (π/ 200) rad
imperial revolution r 1 r = 2π rad
solid angle SI steradian sr 1 sr = 1 rad² = 1 m²/m²
frequency SI T⁻¹ hertz Hz 1 Hz = 1 s⁻¹
force SI L M T⁻² newton N 1 N = 1 m kg s⁻²
CGS dyne dyn 1 dyn = 10⁻⁵ N
imperial kilogram-force kgf 1 kgf = 9.806 65 N
pressure, stress SI L⁻¹ M T⁻² pascal Pa 1 Pa = 1 N/m² = 1 m⁻¹ kg s⁻²
extra bar bar 1 bar = 10⁵ Pa
extra millimetre of mercury mmHg 1 mmHg = 133.322 Pa
imperial standard atmosphere atm 1 atm = 101 325 Pa
imperial torr Torr 1 Torr = (101 325/760) Pa
energy, work, amount of heat SI L² M T⁻² joule J 1 J = 1 N m = 1 m² kg s⁻²
SI watt hour 1 W h = 3 600 J
extra electronvolt eV 1 eV = 1.602 176 53(14)×10⁻¹⁹ J
imperial calorie cal 1 cal = 4.184 J
extra atomic unit of energy, hartree Eh 1 Eh = 4.359 744 17(75)×10⁻¹⁸ J
CGS erg erg 1 erg = 10⁻⁷ J
power, radiant flux SI L² M T⁻³ watt W 1 W = 1 J/s = 1 m² kg s⁻³
electric charge, amount of electricty SI T I coulomb C 1 C = 1 s A
SI ampere hour 1 A h = 3 600 A s
extra atomic unit of charge e 1 e = 1.602 176 53(14)×10⁻¹⁹ C
imperial faraday F 1 F = 1 N_A e mol = 96 485.332 89(59) C
electric potential difference, electromotive force SI L² M T⁻³ I⁻¹ volt V 1 V = 1 W/A = 1 m² kg s⁻³ A⁻¹
capacitance SI L⁻² M⁻¹ T⁴ I² farad F 1 F = 1C/V = 1 m⁻² kg⁻¹ s⁴ A²
electric resitance, impedance SI L² M T⁻³ I⁻² ohm Ω 1 Ω = 1V/A = 1 m² kg s⁻³ A⁻²
electric conductance SI L⁻² M⁻¹ T³ I² siemens S 1 S = 1A/V = 1 m⁻² kg⁻¹ s³ A²
magnetic flux SI L² M T⁻² I⁻¹ weber Wb 1 Wb = 1V s = 1 m² kg s⁻² A⁻¹
CGS maxwell Mx 1 Mx = 10⁻⁸ Wb
magnetic flux density SI M T⁻² I⁻¹ tesla T 1 T = 1 Wb/m² = 1 kg s⁻² A⁻¹
CGS gauss G 1 G = 10⁻⁴ T
inductance SI L² M T⁻² I⁻² henry H 1 H = 1 Wb/A = 1 m² kg s⁻² A⁻²
luminous flux SI J A² lumen lm 1 lm = 1 cd sr
illuminance SI L⁻² J A² lux lx 1 lx = 1 lm/m² = 1 m⁻² cd sr
CGS phot ph 1 ph = 10⁴ lx
luminosity, radiant intensity SI L² M T⁻³ A⁻² watt per steradian W/sr 1 W/sr = 1 m² kg s⁻³
extra solar luminosity L_Sun 1 L_sun (see table)
number of radioactive events, counts SI, base C count Count 1 (base unit)
activity referred to a radionuclide SI T⁻¹ C becquerel Bq 1 Bq = 1 Count s⁻¹
imperial curie Ci 1 Ci = 3.7×10¹⁰ Bq
absorbed does, specific energy (imparted), kerma SI L² T⁻² gray Gy 1 Gy = 1 J/kg = 1 m² s⁻²
imperial rad rd 1 rd = 10⁻² Gy
dose equivalent, ambient does equivalent, personal dose equivalent SI S L² T⁻² sievert Sv 1 Sv = 1 J/kg = 1 m² s⁻²
imperial roentgen equivalent man (rem) rem 1 rem = 10⁻² Sv
radiation weighting factor SI, base S sievert per gray 1 Sv/Gy (base unit)
tissue weighting factor removed 1 one 1
catalytic activity SI T⁻¹ N katal kat 1 kat = 1 s⁻¹ mol
dynamic viscosity SI L⁻¹ M T⁻¹ pascal second 1 Pa s = 1 m⁻¹ kg s⁻¹
CGS poise P 1 P = 0.1 Pa s = 0.1 m⁻¹ kg s⁻¹
moment of force, torque SI L² M T⁻² A⁻¹ joule per radian 1 J/rad = 1 m² kg s⁻²
surface tension SI M T⁻² newton per metre 1 N/m = 1 kg s⁻²
angular velocity SI T⁻¹ A radian per second 1 rad/s = 1 m m⁻¹ s⁻¹
imperial revolution per minute rpm 1 rpm = (2π/60) rad/s
angular acceleration SI T⁻² A radian per second squared 1 rad/s² = 1 m m⁻¹ s⁻²
heat flux density, irradiance, intensity SI M T⁻³ watt per square metre 1 W/m² = 1 kg s⁻³
spectral heat flux density, spectral irradiance SI M T⁻² watt per square metre hertz 1 W/m²Hz = 1 kg s⁻²
(implemented in terms of surface tension) SI Jansky Jy 1 Jy = 10⁻²⁶ W/m²Hz = 1 kg s⁻²
heat capacity, entropy SI L² M T⁻² Θ⁻¹ joule per kelvin 1 J/K = 1 m² kg s⁻² K⁻¹
specific heat capacity, specific entropy SI L² T⁻² Θ⁻¹ joule per kilogram kelvin 1 J/(kg K) = 1 m² s⁻² K⁻¹
specific energy (implemented in terms of absorbed dose) SI L² T⁻² joule per kilogram 1 J/kg = 1 m² s⁻²
thermal conductivity SI L M T⁻³ Θ⁻¹ watt per metre kelvin 1 W/(m K) = 1 m kg s⁻³ K⁻¹
energy density (implemented in terms of pressure) SI L⁻¹ M T⁻² joule per cubic metre 1 J/m³ = 1 m⁻¹ kg s⁻²
electric field strength SI L M T⁻³ I⁻¹ volt per metre 1 V/m = 1 m kg s⁻³ A⁻¹
electric charge density SI L⁻³ T I coulomb per cubic metre 1 C/m³ = 1 m⁻³ s A
surface charge density, electric flux density, electric displacement SI L⁻² T I coulomb per square metre 1 C/m² = 1 m⁻² s A
permittivity SI L⁻³ M⁻¹ T⁴ I² farad per metre 1 F/m = 1 m⁻³ kg⁻¹ s⁴ A²
permeability SI L M T⁻² I⁻² henry per metre 1 H/m = 1 m kg s⁻² A⁻²
molar energy, chemical potential SI L² M T⁻² N⁻¹ joule per mole 1 J/mol = 1 m² kg s⁻² mol⁻¹
molar entropy, molar heat capacity SI L² M T⁻² Θ⁻¹ N⁻¹ joule per mole kelvin 1 J/(mol K) = 1 m² kg s⁻² K⁻¹ mol⁻¹
exposure (x- and γ-rays) SI M⁻¹ T I coulomb per kilogram 1 C/kg = 1 kg⁻¹ s A
imperial roentgen R 1 R = 2.58×10⁻⁴ C/kg
absorbed dose rate SI L² T⁻³ gray per second 1 Gy/s = 1 m² s⁻³
radiance SI M T⁻³ A² watt per square metre steradian 1 W/(m² sr) = 1 kg s⁻³
catalytic activity concentration, reaction rate SI L⁻³ T⁻¹ N katal per cubic metre 1 kat/m³ = 1 m⁻³ s⁻¹ mol
action SI L² M T⁻¹ joule second 1 J s = 1 m² kg s⁻¹
extra natural unit of action ħ 1 ħ = 1.054 571 68(18)×10⁻³⁴ J s
kinematic viscosity SI L² T⁻¹ square metre per second 1 m²/s
CGS stokes St 1 St = 10⁻⁴ m² s⁻¹
dimensionless quantities SI, base 1 one 1
SI, base percent % 1 % = 10⁻²
SI, base permille 1 ‰ = 10⁻³
extra parts per million ppm 1 ppm = 10⁻⁶
amount of data, disk space SI, data B bit bit (base unit)
SI, data byte B 1 B = 8 bit
speed of data transfer, bandwidth SI, data T⁻¹ B bit per second 1 bit/s
SI, data byte per second 1 byte/s = 8 bit/s
screen position data X pixel px (base unit)
screen area data pixel pixel 1 pixel = 1 px²
line density extra L⁻¹ M kilogram per metre 1 kg/m
absement extra L T metre second 1 m s
jerk not implemented L T⁻³ metre per cubic second 1 m s⁻³
snap not implemented L T⁻⁴ metre per quartic second 1 m s⁻⁴
crackle not implemented L T⁻⁵ metre per second to the 5th 1 m s⁻⁵
pop not implemented L T⁻⁶ metre per second to the 6th 1 m s⁻⁶
electric conductivity extra L⁻³ M⁻¹ T³ I² siemens per metre S/m 1 S/m = 1A/V m = 1 m⁻³ kg⁻¹ s³ A²
electric resitivity extra L³ M T⁻³ I⁻² ohm metre Ω m 1 Ω m = 1V m/A = 1 m kg s⁻³ A⁻²
momentum, impulse SI L M T⁻¹ newton second N s 1 N s = 1 m kg s⁻¹
angular momentum SI L² M T⁻¹ A⁻¹ newton metre second per radian N m s/rad 1 N m s/rad = 1 m² kg s⁻¹ rad⁻¹
moment of inertia SI L² M A⁻² square metre kilogram per steradian m² kg/sr 1 m² kg rad⁻²

Unit generator

quantity   = value unit .
unit       = system (one|prefix|user defined prefix) dimension .
dimension  = {(base|user defined base) power} .
base       = L | M | T | I | Θ | N | J | A | C | S | B | X . //See table of dimensions
prefix     = (yocto | zepto | ... | yotta) //See table of prefixes

Constants and Symbols

Table of physical constants

The following physical constants are implemented in benri/si/base.h. They can be used either as a constant or a symbol with benri::si::constant::NAME or benri::si::symbol::NAME.

Name Symbol Value benri name Conversion
speed of light c 299 792 458 m/s (exact) speed_of_light 1 m s⁻¹
magnetic constant μ₀ 4π×10⁻⁷ H/m (exact) magnetic_constant 1 H/m = 1 m kg s⁻² A⁻²
electric constant ε₀ = 1/μ₀c² 8.854 178 817...×10⁻¹² F/m electric_constant 1 F/m = 1 m⁻³ kg⁻¹ s⁴ A²
gravitational constant G 6.674 08(31)×10⁻¹¹ m³ kg⁻¹ s⁻² gravitational_constant 1 m³ kg⁻¹ s⁻²
Planck constant h 6.626 070 040(81)×10⁻³⁴ J s planck_constant 1 J s = 1 m² kg s⁻¹
reduced Planck constant ħ = h/2π 1.054 571 800(13)×10⁻³⁴ J s reduced_planck_constant 1 J s = 1 m² kg s⁻¹
elementary charge e 1.602 176 6208(98)×10⁻¹⁹ C elementary_charge 1 C = 1 s A
fine-structure constant α = e²/4πε₀ħc = e²μ₀c/2h 7.297 352 5664(17)×10⁻³ fine_structure_constant 1
inverse fine-structure constant α⁻¹ 137.035 999 139(31) inverse_fine_structure_constant 1
electron mass m_e 9.109 383 56(11)×10⁻³¹ kg electron_mass 1 kg
proton mass m_p 1.672 621 898(21)×10⁻²⁷ kg proton_mass 1 kg
muon mass m_μ 1.883 531 594(48)×10⁻²⁸ kg muon_mass 1 kg
tau mass m_τ 3.167 47(29)×10⁻²⁷ kg tau_mass 1 kg
neutron mass m_n 1.674 927 471(21)×10⁻²⁷ kg neutron_mass 1 kg
deuteron mass m_d 3.343 583 719(41)×10⁻²⁷ kg deuteron_mass 1 kg
triton mass m_t 5.007 356 665(62)×10⁻²⁷ kg triton_mass 1 kg
helion mass m_h 5.006 412 700(62)×10⁻²⁷ kg helion_mass 1 kg
α particle mass m_α 6.644 657 230(82)×10⁻²⁷ kg alpha_particle_mass 1 kg
Rydberg constant R_∞ = α²m_e c/2h 10 973 731.568 508(65) m⁻¹ rydberg_constant 1 m⁻¹
Bohr radius a₀ = α/4πR_∞ 0.529 177 210 67(12)×10⁻¹⁰ m bohr_radius 1 m
Bohr magneton μ_B = eħ/2m_e 927.400 9994(57)×10⁻²⁶ J/T bohr_magneton 1 J/T = 1 m² A
Avogadro constant N_A 6.022 140 857(74)×10²³ mol⁻¹ avogadro_constant 1 mol⁻¹
Faraday constant F = N_A e 96 485.332 89(59) C/mol faraday_constant 1 C/mol = 1 s A mol⁻¹
molar gas constant R 8.314 4598(48) J/(mol K) molar_gas_constant 1 J/(mol K) = 1 m² kg s⁻² mol⁻¹ K⁻¹
Boltzmann constant k = R/N_A 1.380 648 52(79)×10⁻²³ J/K boltzmann_constant 1 J/K = 1 m² kg s⁻² K⁻¹
Stefan-Boltzmann constant σ = π²k⁴/60 ħ³c² 5.670 367(13)×10⁻⁸ W m⁻² K⁻⁴ sr⁻¹ stefan_boltzmann_constant 1 W m⁻² K⁻⁴ sr⁻¹ = 1 kg s⁻³ K⁻⁴ sr⁻¹
magnetic flux quantum φ₀ = h/2e 2.067 833 831(13)×10⁻¹⁵ Wb magnetic_flux_quantum 1 Wb = 1 m² kg s⁻² A⁻¹
Josephson constant K_J = 2e/h 483 597.8525(30)×10⁹ Hz/V josephson_constant 1 Hz/V = 1 m⁻² kg⁻¹ s² A
von Klitzing constant R_K = h/e² 25 812.807 4555(59) Ω von_klitzing_constant 1 Ω = 1 m² kg s⁻³ A⁻²
atomic mass unit u 1.660 538 86(28)×10⁻²⁷ kg atomic_mass_unit 1 kg
Hartree energy E_h = e²/4πε₀a₀ 4.359 744 650(54)×10⁻¹⁸ J hartree_energy 1 J = 1 m² kg s⁻²
conductance quantum G₀ = 2e²/h 7.748 091 7310(18)×10⁻⁵ S conductance_quantum 1 S = 1 m⁻² kg⁻¹ s³ A²
inverse conductance quantum G₀⁻¹ 12 906.403 7278(29) Ω inverse_conductance_quantum 1 Ω = 1 m² kg s⁻³ A⁻²
vacuum impedance Z₀ = μ₀c 376.730 313 461... Ω vacuum_impedance 1 Ω = 1 m² kg s⁻³ A⁻²
Nuclear magneton μ_N = eħ/2m_p 5.050 783 699(31)×10⁻²⁷ J/T nuclear_magneton 1 J/T = 1 m² A

Table of mathematical constants

The following mathematical constants are implemented in benri/si/base.h. They can be used either as a constant or a symbol with benri::si::constant::NAME or benri::si::symbol::NAME.

Name Symbol Value benri name
Pi (Archimedes constant) π 3.141592653589... pi
π/4 quarter_pi
π/2 half_pi
two_pi
Euler constant e 2.718281828459... e
Golden ratio φ 1.618033988749... phi
Euler Mascheroni constant γ 0.577215664901... gamma
Square root of two √2 1.414213562373... root_two

Table of astronomical constants

The following astronomical constants are implemented in benri/si/astronomic.h. They can be used either as a constant or a symbol with benri::si::constant::NAME or benri::si::symbol::NAME.

Warning: I could not find a good reference for these values. They might be wrong.

Name Symbol Value benri name Conversion
Solar mass parameter GM_S 1.327 124 40×10²⁰ m³ s⁻² 1 m³ s⁻²
Solar luminosity L_S 3.939×10²⁶ W/sr 1 W/sr = 1
Sun-Jupiter mass ratio M_S/M_J 1.047 348 644×10³ 1
Sun-Earth mass ratio M_S/M_E 322 946.0487 1
Solar mass M_S = (GM_S)G⁻¹ 1.988 474 491×10³⁰ kg 1 kg
Jupiter mass M_J = (GM_S)(M_S/M_J)⁻¹G⁻¹ 1.898 579 334×10²⁷ kg 1 kg
Earth mass M_E = (GM_S)(M_S/M_E)⁻¹G⁻¹ 6.157 296 241×10²⁴ kg 1 kg

Dimensions

Table of base dimensions

The following base dimensions are implemented in benri/impl/dimensions.h. They can be accessed with benri::dimension::NAME.

Name Symbol benri name
length L L
mass M M
time, duration T T
electric current I I
thermodynamic temperature Θ H
amount of substance N N
luminous intensity J J
angle, plane angle A A
number of radioactive events, counts C C
helper for sievert units S S
amount of data, bits, bytes B B
screen position X X
degree Celsius °C degC
degree Fahrenheit °F degF

Table of derived dimensions

The following derived dimensions are implemented in benri/impl/dimensions.h. They can be accessed with benri::dimension::NAME.

Name benri name
length L

Prefixes

Table of SI prefixes

The following SI prefixes are implemented in benri/si/base.h. They can be accessed with benri::dimension::NAME.

Name Symbol Value benri name
yocto y 10⁻²⁴ yocto
zepto z 10⁻²¹ zepto
atto a 10⁻¹⁸ atto
femto f 10⁻¹⁵ femto
pico p 10⁻¹² pico
nano n 10⁻⁹ nano
micro μ 10⁻⁶ micro
milli m 10⁻³ milli
centi c 10⁻² centi
deci d 10⁻¹ deci
one 10⁰ one
deca da 10¹ deca
hecto h 10² hecto
kilo k 10³ kilo
mega M 10⁶ mega
giga G 10⁹ giga
tera T 10¹² tera
peta P 10¹⁵ peta
exa E 10¹⁸ exa
zetta Z 10²¹ zetta
yotta Y 10²⁴ yotta

Table of data prefixes

The following computer science prefixes are implemented in benri/si/data.h. They can be accessed with benri::dimension::NAME.

Name Symbol Value benri name
kibi ki 2¹⁰ kibi
mebi Mi 2²⁰ mebi
gibi Gi 2³⁰ gibi
tebi Ti 2⁴⁰ tebi
pebi Pi 2⁵⁰ pebi
exbi Ei 2⁶⁰ exbi
zebi Zi 2⁷⁰ zebi
yobi Yi 2⁸⁰ yobi