Skip to content
This repository has been archived by the owner on Oct 25, 2024. It is now read-only.

After fine-tuning qwen2-1.5B-instruction and quantifying its AWQ, an error occurred while using Intel Extension for Transformers and CPU for inference. But when I used the same method to fine tune and quantify qwen1.5-4B chat before, I could use Intel Extension for Transformers to accelerate CPU inference. 对qwen2-1.5B-instruct微调并且awq量化后,使用intel-extension-for-transformers和CPU进行推理时出错。但我之前使用同样的方式微调和量化的qwen1.5-4B-chat时是可以使用intel-extension-for-transformers加速CPU推理的。 #1697

Open
Autism-al opened this issue Sep 11, 2024 · 1 comment

Comments

@Autism-al
Copy link

model.cpp: loading model from runtime_outs/ne_qwen2_q_autoround.bin
The number of ne_parameters is wrong.
init: n_vocab = 151936
init: n_embd = 1536
init: n_mult = 8960
init: n_head = 12
init: n_head_kv = 0
init: n_layer = 28
init: n_rot = 128
init: ftype = 0
init: max_seq_len= 32768
init: n_ff = 8960
init: n_parts = 1
MODEL_ASSERT: /root/w0/workspace/neuralspeed-wheel-build/nlp_repo/neural_speed/./models/qwen/qwen.h:48: false
/tmp/tmp9b4073w1: line 3: 55575 Aborted python /home/lmf/llm/Qwen2-finetuning/awq_intel_extension.py
ERROR conda.cli.main_run:execute(124): conda run python /home/lmf/llm/Qwen2-finetuning/awq_intel_extension.py failed. (See above for error)

@Autism-al Autism-al changed the title 对qwen2-1.5B-instruct微调并且awq量化后,使用intel-extension-for-transformers和CPU进行推理时出错。但我之前使用同样的方式微调和量化的qwen1.5-4B-chat时是可以使用intel-extension-for-transformers加速CPU推理的 After fine-tuning qwen2-1.5B-instruction and quantifying its AWQ, an error occurred while using Intel Extension for Transformers and CPU for inference. But when I used the same method to fine tune and quantify qwen1.5-4B chat before, I could use Intel Extension for Transformers to accelerate CPU inference对qwen2-1.5B-instruct微调并且awq量化后,使用intel-extension-for-transformers和CPU进行推理时出错。但我之前使用同样的方式微调和量化的qwen1.5-4B-chat时是可以使用intel-extension-for-transformers加速CPU推理的。 Sep 11, 2024
@Autism-al Autism-al changed the title After fine-tuning qwen2-1.5B-instruction and quantifying its AWQ, an error occurred while using Intel Extension for Transformers and CPU for inference. But when I used the same method to fine tune and quantify qwen1.5-4B chat before, I could use Intel Extension for Transformers to accelerate CPU inference对qwen2-1.5B-instruct微调并且awq量化后,使用intel-extension-for-transformers和CPU进行推理时出错。但我之前使用同样的方式微调和量化的qwen1.5-4B-chat时是可以使用intel-extension-for-transformers加速CPU推理的。 After fine-tuning qwen2-1.5B-instruction and quantifying its AWQ, an error occurred while using Intel Extension for Transformers and CPU for inference. But when I used the same method to fine tune and quantify qwen1.5-4B chat before, I could use Intel Extension for Transformers to accelerate CPU inference. 对qwen2-1.5B-instruct微调并且awq量化后,使用intel-extension-for-transformers和CPU进行推理时出错。但我之前使用同样的方式微调和量化的qwen1.5-4B-chat时是可以使用intel-extension-for-transformers加速CPU推理的。 Sep 11, 2024
@Autism-al
Copy link
Author

I don't know what the problem is, it seems to be a parameter error in the converted model, and everything works fine when I use the transformer and GPU.

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant