Need to keep master unmodified for VAI1.1 publish. So create this tmp repository
Would merge back to https://github.com/gewuek/vitis_ai_custom_platform_flow when it is available for editing
- Introduction to Vitis Acceleration Platform
- Create the Vivado Hardware Component
- Configure Platform Interface Properties and Generate XSA
- Create the PetaLinux Software Component
- Create the Vitis Platform
- Prepare for the DPU Kernel
- Create and Build a Vitis Application
- Prepare the Network Deployment File
- Run Application on Board
The Vivado Design Suite is used to generate XSA containing a few additional IP blocks and metadata to support kernel connectivity. The following figure shows the acceleration kernel application development flow:
For Vitis AI platform, DPU is integrated as RTL kernel. To create a Vitis AI platform on MPSoC and run ConvNet on that, you need to create a Vivado HW platform, a PetaLinux SW platform, a Vitis platform which contains both the HW/SW platform you created. Then create a Vitis application based on this Vitis platform, import DPU kernel & ARM deployment code and build the Vitis application to be a HW-SW cowork design. Vitis would generate a SD card folder as output which would contain all the files needed to boot up from a target board. In the meanwhile to cross-compile the application and run it on board you may need Vitis AI library and DNNDK, you should install them both on the host and target board.
-
Source <Vitis_Install_Directory>/settings64.sh, and call Vivado out by typing "vivado" in the console.
-
Create a Vivado project named zcu104_custom_platform.
a) Select File->Project->New.
b) Click Next.
c) In Project Name dialog set Project name tozcu104_custom_platform
.
d) Click Next.
e) Leaving all the setting to default until you goto the Default Part dialog.
f) Select Boards tab and then select Zynq UltraScale+ ZCU104 Evaluation Board
g) Click Next, and your project summary should like below:
h) Then click Finish -
Create a block design named system.
a) Select Create Block Design.
b) Change the design name tosystem
.
c) Click OK. -
Add MPSoC IP and run block automation to configure it.
a) Right click Diagram view and select Add IP.
b) Search forzynq
and then double-click the Zynq UltraScale+ MPSoC from the IP search results.
c) Click the Run Block Automation link to apply the board presets.
In the Run Block Automation dialog, ensure the following is check marked:- All Automation
- Zynq_ultra_ps_e_0
- Apply Board Presets
d) Click OK. You should get MPSoC block configured like below:
- All Automation
Note: At this stage, the Vivado block automation has added a Zynq UltraScale+ MPSoC block and applied all board presets for the ZCU104. Add the IP blocks and metadata to create a base hardware design that supports acceleration kernels.
- Re-Customizing the Processor IP Block
a) Double-click the Zynq UltraScale+ MPSoC block in the IP integrator diagram.
b) Select Page Navigator > PS-PL Configuration.
c) Expand PS-PL Configuration > PS-PL Interfaces by clicking the > symbol.
d) Expand Master Interface.
e) Uncheck the AXI HPM0 FPD and AXI HPM1 FPD interfaces.
f) Click OK.
g) Confirm that the IP block interfaces were removed from the Zynq UltraScale+ MPSoC symbol in your block design.
Note: This is a little different from traditional Vivado design flow. When trying to make AXI interfaces available in Vitis design you should disable these interfaces at Vivado IPI platform and enable them at platform interface properties. We will show you how to do that later
-
Add clock block:
a) Right click Diagram view and select Add IP.
b) Search for and add a Clocking Wizard from the IP Search dialog.
c) Double-click the clk_wiz_0 IP block to open the Re-Customize IP dialog box.
d) Click the Output Clocks tab.
e) Enable clk_out1 through clk_out3 in the Output Clock column, rename them asclk_100m
,clk_200m
,clk_400m
and set the Requested Output Freq as follows:- clk_100m to
100
MHz. - clk_200m to
200
MHz. - clk_400m to
400
MHz.
f) At the bottom of the dialog box set the Reset Type to Active Low.
g) Click OK to close the dialog.
The settings should like below:
Note: So now we have set up the clock system for our design. This clock wizard use the pl_clk as input clock and geneatate clocks needed for the whole logic design. In this simple design I would like to use 100MHz clock as the axi_lite control bus clock, 200MHz clock as DPU AXI interface clock and 400MHz as DPU core clock. You can just modifiy these clocks as you like and remember we should "tell" Vitis what clock we can use. Let's do that later.(And after creating this example I learn that the Vitis AI DPU can only have 2 clock domains and the axi_lite control bus and DPU AXI interface share same clock. So the 100MHz clock can't be used as axi_lite control bus for DPU now.) - clk_100m to
-
Add the Processor System Reset blocks:
a) Right click Diagram view and select Add IP.
b) Search for and add a Processor System Reset from the IP Search dialog
c) Add 2 more Processor System Reset blocks, using the previous step; or select the proc_sys_reset_0 block and Copy (Ctrl-C) and Paste (Ctrl-V) it four times in the block diagram
d) Rename them asproc_sys_reset_100m
,proc_sys_reset_200m
,proc_sys_reset_400m
-
Connect Clocks and Resets:
a) Click Run Connection Automation, which will open a dialog that will help connect the proc_sys_reset blocks to the clocking wizard clock outputs.
b) Enable All Automation on the left side of the Run Connection Automation dialog box.
c) Select clk_in1 on clk_wiz_0, and set the Clock Source to /zynq_ultra_ps_e_0/pl_clk0.
d) For each proc_sys_reset instance, select the slowest_sync_clk, and set the Clock Source as follows:- proc_sys_reset_100m with /clk_wiz_0/clk_100m
- proc_sys_reset_200m with /clk_wiz_0/clk_200m
- proc_sys_reset_400m with /clk_wiz_0/clk_400m
e) On each proc_sys_reset instance, select the ext_reset_in, set Board Part Interface to Custom and set the Select Manual Source to /zynq_ultra_ps_e_0/pl_resetn0.
f) Make sure all checkboxes are enabled, and click OK to close the dialog and create the connections.
g) Connect all the dcm_locked signals on each proc_sys_reset instance to the locked signal on clk_wiz_0.
Then the connection should like below:
Now we have added clock and reset IPs and configure and connect them. Some would be used in creating the hardware platform and some would be called in Vitis high level design - proc_sys_reset_100m with /clk_wiz_0/clk_100m
-
Add Kernel Interrupt Support
You can provide kernel interrupt support by adding an AXI interrupt controller to the base hardware design.
a) In the block diagram, double-click the Zynq UltraScale+ MPSoC block.
b) Select PS-PL Configuration > PS-PL interfaces > Master interface.
c) Select the AXI HPM0 LPD check box, keep the AXI HPM0 LPD Data width settings as default 32.
d) Click OK to finsih the configuration.
e) Connect maxihpm0_lpd_aclk to /clk_wiz_0/clk_100m.
f) Right click Diagram view and select Add IP, search and add AXI Interrupt Controller IP.
g) Double click the AXI Interrupt Controller block, set Interrupts type toLevel Interrupt
, set Level type toActive High
, set Interrupt Output Connection toBus
. Click OK to save the change.
h) Click the AXI Interrupt Controller block and go to Block Properties -> Properties, configure or make sure the parameters are set as following: C_ASYNC_INTR:0xFFFFFFFF
.
When interrupts generated from kernels are clocked by different clock domains, this option is useful to capture the interrupt signals properly. For the platform that has only one clock domain, this step can be skipped.i) Click Run Connection Automation
j) Leave the default values for Master interface and Bridge IP.- Master interface default is /zynq_ultra_ps_e_0/M_AXI_HPM0_LPD.
- Bridge IP default is New AXI interconnect.
k) Expand output interface Interrupt of axi_intc_0 to show the port irq, connect this irq portto zynq_ultra_ps_e_0.pl_ps_irq0
l) Setup *PFM_IRQ property by typing following command in Vivado console:
set_property PFM.IRQ {intr {id 0 range 32}} [get_bd_cells /axi_intc_0]
The IPI design connection would like below:
Note: Now we have finished the IPI design input, let's set some platform parameters and generate the DSA
- Master interface default is /zynq_ultra_ps_e_0/M_AXI_HPM0_LPD.
-
Click Window->Platform interfaces, and then click Enable platform interfaces link to open the Platform Interfaces Window.
-
Select Platform-system->zynq_ultra_ps_e_0->S_AXI_HP0_FPD, in Platform interface Properties tab enable the Enabled option like below:
-
Select Options tab, set memport to
S_AXI_HP
and set sptag toHP0
like below: -
Do the same operations for S_AXI_HP1_FPD, S_AXI_HP2_FPD, S_AXI_HP3_FPD, S_AXI_HPC0_FPD, S_AXI_HPC1_FPD and set sptag to
HP1
,HP2
,HP3
,HPC0
,HPC1
. And be noticed that for HPC0/HPC1 ports the memport is set toS_AXI_HPC
in default, but actually we would use these ports without data coherency function enabled to get a high performance. So please modify it intoS_AXI_HP
manually.
-
Enable the M01_AXI ~ M08_AXI ports of ps8_0_axi_periph IP(The axi_interconnect between M_AXI_HPM0_LPD and axi_intc_0), and set these ports with the same sptag name to
HPM0_LPD
and memport type toM_AXI_GP
-
Enable the M_AXI_HPM0_FPD and M_AXI_HPM1_FPD ports, set sptag name to
HPM0_FPD
,HPM1_FPD
and memport toM_AXI_GP
.
Now we enable AXI master/slave interfaces that can be used for Vitis tools on the platform -
Enable clk_200m, clk_400m, clk_100m of clk_wiz_0, set id of clk_200m to
0
, set id of clk_400m to1
, set id of clk_100m to2
, enable is default for clk_200m. -
Create a
xsa_gen
folder inside your Vivado project. -
Create a file named
xsa.tcl
inside the xsa_gen folder. -
Copy the following commands into the xsa.tcl file and save the file.
# Set the platform design intent properties
set_property platform.design_intent.embedded true [current_project]
set_property platform.design_intent.server_managed false [current_project]
set_property platform.design_intent.external_host false [current_project]
set_property platform.design_intent.datacenter false [current_project]
get_property platform.design_intent.embedded [current_project]
get_property platform.design_intent.server_managed [current_project]
get_property platform.design_intent.external_host [current_project]
get_property platform.design_intent.datacenter [current_project]
# Set the platform default output type property
set_property platform.default_output_type "sd_card" [current_project]
get_property platform.default_output_type [current_project]
-
In your Vivado project, use the Tcl console to navigate to the xsa_gen folder, and run
source ./xsa.tcl
command. -
Right-click and select Validate Design on IP integrator diagram
-
Create the HDL wrapper:
a. Right-click system.bd in the Block Design, Sources view and select Create HDL Wrapper.
b. Select Let Vivado manage wrapper and auto-update.
c. Click OK. -
Right-click system.bd in the Block Design, Sources view and select Generate Output Products.
-
Type the tcl command in tcl console like:
write_hw_platform -unified -force -file <your_vivado_project_dir>/xsa_gen/zcu104_custom_platform.xsa
If you use export Hardware function in Vivado GUI it would add -fixed option which would generate a XSA for traditional embedded platform which can't add DPU acceleration kernel here. -
Check the <your_vivado_project_dir>/xsa_gen folder, you should find the zcu104_custom_platform.xsa generated there.
Now we finish the Hardware platform creation flow, then we should go to the Software platform creation
A Vitis platform requires software components. For Linux, the PetaLinux tools are invoked outside of the Vitis tools by the developer to create the necessary Linux image,Executable and Linkable Format (ELF) files, and sysroot with XRT support. Yocto or third-party Linux development tools can also be used as long as they produce the same Linux output products as PetaLinux.
- source <petaLinux_tool_install_dir>/settings.sh
- Create a PetaLinux project named zcu104_custom_plnx and configure the hw with the XSA file we created before:
petalinux-create --type project --template zynqMP --name zcu104_custom_plnx
cd zcu104_custom_plnx
petalinux-config --get-hw-description=<you_vivado_design_dir>/xsa_gen/
- A petalinux-config menu would be launched, select DTG Settings->MACHINE_NAME, modify it to
zcu104-revc
.
Note: If you are using a Xilinx development board it is recomended to modify the machine name so that the board configurations would be involved in the DTS auto-generation. Otherwise you would need to configure the associated settings(e.g. the PHY information DTS node) by yourself manually. - Add user packages by appending the CONFIG_x lines below to the <your_petalinux_project_dir>/project-spec/meta-user/conf/user-rootfsconfig file.
Packages for base XRT support:
CONFIG_packagegroup-petalinux-xrt
Packages for easy system management:
CONFIG_dnf
CONFIG_e2fsprogs-resize2fs
CONFIG_parted
Packages for Vitis-AI dependencies support:
CONFIG_packagegroup-petalinux-vitisai
Packages for natively building Vitis AI applications on target board:
CONFIG_packagegroup-petalinux-self-hosted
CONFIG_cmake
CONFIG_packagegroup-petalinux-vitisai-dev
CONFIG_xrt-dev
CONFIG_opencl-clhpp-dev
CONFIG_opencl-headers-dev
CONFIG_packagegroup-petalinux-opencv
CONFIG_packagegroup-petalinux-opencv-dev
Packages for running Vitis-AI demo applications with GUI:
CONFIG_mesa-megadriver
CONFIG_packagegroup-petalinux-x11
CONFIG_packagegroup-petalinux-v4lutils
CONFIG_packagegroup-petalinux-matchbox
-
Run
petalinux-config -c rootfs
and select user packages, select name of rootfs all the libraries listed above, save and exit. -
Enable OpenSSH and disable dropbear
Dropbear is the default SSH tool in Vitis Base Embedded Platform. If OpenSSH is used to replace Dropbear, it could achieve 4x times faster data transmission speed (tested on 1Gbps Ethernet environment). Since Vitis-AI applications may use remote display feature to show machine learning results, using OpenSSH can improve the display experience.
a) Runpetalinux-config -c rootfs
.
b) Go to Image Features.
c) Disable ssh-server-dropbear and enable ssh-server-openssh.
d) Go to Filesystem Packages-> misc->packagegroup-core-ssh-dropbear and disable packagegroup-core-ssh-dropbear.
e) Go to Filesystem Packages -> console -> network -> openssh and enable openssh, openssh-sftp-server, openssh-sshd, openssh-scp. -
In rootfs config go to Image Features and enable package-management and debug_tweaks option, store the change and exit.
-
CPU IDLE would cause CPU IDLE when JTAG is connected. So it is recommended to disable the selection.
a) Typepetalinux-config -c kernel
b) Ensure the following are TURNED OFF by entering 'n' in the [ ] menu selection for:
- CPU Power Mangement > CPU Idle > CPU idle PM support
- CPU Power Management > CPU Frequency scaling > CPU Frequency scaling -
Update the Device tree to include the zocl driver by appending the text below to the project-spec/meta-user/recipes-bsp/device-tree/files/system-user.dtsi file.
&amba {
zyxclmm_drm {
compatible = "xlnx,zocl";
status = "okay";
interrupt-parent = <&axi_intc_0>;
interrupts = <0 4>, <1 4>, <2 4>, <3 4>,
<4 4>, <5 4>, <6 4>, <7 4>,
<8 4>, <9 4>, <10 4>, <11 4>,
<12 4>, <13 4>, <14 4>, <15 4>,
<16 4>, <17 4>, <18 4>, <19 4>,
<20 4>, <21 4>, <22 4>, <23 4>,
<24 4>, <25 4>, <26 4>, <27 4>,
<28 4>, <29 4>, <30 4>, <31 4>;
};
};
&axi_intc_0 {
xlnx,kind-of-intr = <0x0>;
xlnx,num-intr-inputs = <0x20>;
interrupt-parent = <&gic>;
interrupts = <0 89 4>;
};
&sdhci1 {
no-1-8-v;
disable-wp;
};
- Modify the u-boot settings:
Because we didn't use SD card to store the rootfs files. So that u-boot need to load a large image. We need to modify the u-boot so that it can load larger image. Open project-spec/meta-user/recipes-bsp/u-boot/files/platform-top.h and add:
#define CONFIG_SYS_BOOTM_LEN 0x80000000
#undef CONFIG_SYS_BOOTMAPSZ
- From within the PetaLinux project (petalinux), type
petalinux-build
to build the project. - Create a sysroot self-installer for the target Linux system:
cd images/linux
petalinux-build --sdk
Note: We would store all the necessary files for Vitis platform creation flow. Here we name it zcu104_dpu_pkg
. Then we create a pfm folder inside.
13. Type ./sdk.sh
to install PetaLinux SDK, provide a full pathname to the output directory <full_pathname_to_zcu104_dpu_pkg>/pfm(here in this example I use /home/wuxian/wu_project/vitis2020.1/vitis_custom_platform_flow/zcu104_dpu_pkg/pfm) and confirm.
14. We would install Vitis AI library and DNNDK into this rootfs in the future.
15. After the PetaLinux build succeeds, the generated Linux software components are in the <your_petalinux_dir>/images/linux directory. For our example, the images/linux directory contains the generated image and ELF files listed below. Copy these files to the <full_pathname_to_zcu104_dpu_pkg>/pfm/boot directory in preparation for running the Vitis platform creation flow:
- image.ub
- fsbl.elf (Rename the petalinux generated zynq_fsbl.elf to fsbl.elf)
- pmufw.elf
- bl31.elf
- u-boot.elf
- boot.scr
- Add a BIF file (linux.bif) to the <full_pathname_to_zcu104_dpu_pkg>/pfm/boot directory with the contents shown below. The file names should match the contents of the boot directory. The Vitis tool expands these pathnames relative to the sw directory of the platform at v++ link time or when generating an SD card. However, if the bootgen command is used directly to create a BOOT.BIN file from a BIF file, full pathnames in the BIF are necessary. Bootgen does not expand the names between the <> symbols.
/* linux */
the_ROM_image:
{
[fsbl_config] a53_x64
[bootloader] <fsbl.elf>
[pmufw_image] <pmufw.elf>
[destination_device=pl] <bitstream>
[destination_cpu=a53-0, exception_level=el-3, trustzone] <bl31.elf>
[destination_cpu=a53-0, exception_level=el-2] <u-boot.elf>
}
Note: Now we prepare the HW platform and SW platform, next we would create a Vitis Platform.
- Source Vitis and XRT settings
source <Vitis_Install_Directory>/settings64.sh
source /opt/xilinx/xrt/setup.sh
- Go to the zcu104_dpu_pkg folder you created:
cd <full_pathname_to_zcu104_dpu_pkg>
. - Launch Vitis by typing
vits
in the console. - Select zcu104_dpu_pkg folder as workspace directory.
- In the Vitis IDE, select File > New > Platform Project to create a platform project.
- In the Create New Platform Project dialog box, do the following:
a) Enter the project name. For this example, typezcu104_vai_custom
.
b) Leave the checkbox for the default location selected.
c) Click Next. - In the Platform Project dialog box, do the following:
a) Select Create from hardware specification (XSA).
b) Click Next. - In the Platform Project Specification dialog box, do the following:
a) Browse to the XSA file generated by the Vivado. In this case, it is located invitis_custom_platform_flow/zcu104_custom_platform/xsa_gen/zcu104_custom_platform.xsa
.
b) Set the operating system to linux.
c) Set the processor to psu_cortexa53.
d) Leave the checkmark selected to generate boot components.
e) Click Finish. - In the Platform Settings view, observe the following:
- The name of the Platform Settings view matches the platform project name of zcu104_vai_custom.
- A psu_cortexa53 device icon is shown, containing a Linux on psu_cortexa53 domain.
- A psu_cortexa53 device icon is shown, containing a zynqmp_fsbl BSP.
- A psu_pmu_0 device icon is shown, containing a zynqmp_pmufw BSP.
- The name of the Platform Settings view matches the platform project name of zcu104_vai_custom.
- Click the linux on psu_cortexa53 domain, browse to the locations and select the directory or file needed to complete the dialog box for the following:
Linux Build Output:
Browse to zcu104_dpu_pkg/pfm/boot and click OK.
Bif file:
Browse to zcu104_dpu_pkg/pfm/boot/linux.bif file and click OK.
Image:
Browse to zcu104_dpu_pkg/pfm/boot and click OK.
11. Click zcu104_vai_custom project in the Vitis Explorer view, click the Build button to generate the platform.
Note: The generated platform is placed in the export directory. BSP and source files are also provided for re-building the FSBL and PMU if desired and are associated with the platform. The platform is ready to be used for application development.
- Download Vitis AI by calling command
git clone https://github.com/Xilinx/Vitis-AI.git
. - Navigate to the repository:
cd Vitis-AI
, set the tag to proper tag(here we use v1.2) by typing:git checkout v1.2
. - If you don't want to destroy the TRD reference design. Copy DPU-TRD folder into another directory. For example I would copy that into my zcu104_dpu_pkg folder:
cp -r DPU-TRD ~/wu_project/vitis2020.1/vitis_custom_platform_flow/zcu104_dpu_pkg/
- Source Vitis tools setting sh file:
source <vitis install path>/Vitis/2020.1/settings64.sh
. - Source XRT sh file:
source opt/xilinx/xrt/setup.sh
. - Export SDX_PLATFORM with the directory of the custom platform xpfm file which you created before. Here in my project it would be:
export SDX_PLATFORM=/home/wuxian/wu_project/vitis2020.1/vitis_custom_platform_flow/zcu104_dpu_pkg/zcu104_vai_custom/export/zcu104_vai_custom/zcu104_vai_custom.xpfm
. Remember now this custom platform name is zcu104_vai_custom. - Navigate to the copy of the DPU-TRD folder, then go to the ./prj/Vitis folder.
There are 2 files can be used to modify the DPU settings: The config_file/prj_config file is for DPU connection in Vitis project and the dpu_conf.vh is for other DPU configurations. Here we would modify the prj_config so that 2 DPU cores are enabled. And then we modify dpu_conf.vh as DPU-TRD readme suggested. - Modify the config_file/prj_config like below:
[clock]
id=0:DPUCZDX8G_1.aclk
id=1:DPUCZDX8G_1.ap_clk_2
id=0:DPUCZDX8G_2.aclk
id=1:DPUCZDX8G_2.ap_clk_2
[connectivity]
sp=DPUCZDX8G_1.M_AXI_GP0:HPC0
sp=DPUCZDX8G_1.M_AXI_HP0:HP0
sp=DPUCZDX8G_1.M_AXI_HP2:HP1
sp=DPUCZDX8G_2.M_AXI_GP0:HPC1
sp=DPUCZDX8G_2.M_AXI_HP0:HP2
sp=DPUCZDX8G_2.M_AXI_HP2:HP3
[advanced]
misc=:solution_name=link
#param=compiler.addOutputTypes=sd_card
#param=compiler.skipTimingCheckAndFrequencyScaling=1
[vivado]
prop=run.impl_1.strategy=Performance_Explore
#param=place.runPartPlacer=0
- Modify dpu_conf.vh from:
`define URAM_DISABLE
to
`define URAM_ENABLE
- Generate the XO file by typing:
make binary_container_1/dpu.xo DEVICE=zcu104_vai_custom
. - Verify if the XO file is generated here: <zcu104_dpu_pkg directory>/DPU-TRD/prj/Vitis/binary_container_1/dpu.xo.
- Open Vitis workspace you were using before.
- Select File -> New -> Application Project.
- Click next
- Select zcu104_vai_custom as platform, click next.
- Name the project
hello_dpu
, click next. - Set Domain to linux on psu_cortexa53, set Sys_root path to
<full_pathname_to_zcu104_dpu_pkg>/pfm/sysroots/aarch64-xilinx-linux
(as you created by running sdk.sh), keep the Kernel Image setting in default and click next. - Select System Optimization Examples -> Empty application and click finish to generate the application.
- Right click on the src folder under your hello_dpu application in the Expplorer window, and select "Import Sources"
- Choose from directory <zcu104_dpu_pkg directory>/DPU-TRD/prj/Vitis/binary_container_1/ as the target location, and import the dpu.xo file that we just created.
- Import sources again, and add the cpp, header and prj_config files from ref_files/src folder provided by this Git repository.
- In the Explorer window double click the hello_dpu.prj file to open it, change the Active Build configuration from Emulation-SW to Hardware.
- Under Hardware Functions, click the lightning bolt logo to Add Hardware Function.
- Select the "DPUCZDX8G" included as part of the dpu.xo file that we included earlier.
- Click on binary_container_1 to change the name to dpu.
- Click on DPUCZDX8G and change the Compute Units from
1
to2
because we have 2 dpu cores involved. - Right click on "dpu", select Edit V++ Options, add
--config ../src/prj_config -s
as V++ Options, then click OK. - Go back to the Explorer window, right click on the hello_dpu project folder select *C/C++ Building Settings.
- In Propery for hello_dpu dialog box, select C/C++ Build->Settings->Tool Settings->GCC Host Linker->Libraries , click the green "+" to add the following libraries:
opencv_core
opencv_imgcodecs
opencv_highgui
opencv_imgproc
opencv_videoio
n2cube
hineon
- In the same page, Check the Library search path to makesure the
${SYSROOT}/usr/lib/
is added, click Apply
- Then go to C/C++ Build->Settings->Tool Settings->GCC Host Compiler->Includes, remove the HLS include directory and add
${SYSROOT}/usr/include/
like below, then click Apply and Close to save the changes.
These steps are used to make sure your application can call libs in rootfs directly on Vitis appilcation build - The Vitis AI library and DNNDK are not included in PetaLinux SDK rootfs, now let's install them into the rootfs directory:
Note: We should follow the section Setting Up the Host For Edge of Vitis AI library readme file to install the Vitis AI library and section Setup cross-compiler for Vitis AI DNNDK and make samples of DNNDK readme file to install the DNNDK. If you feel difficult to following the official guide there you can refer to the following ones. Please just skip these steps if you already install the libs referring to the readme files:
a) Download the vitis_ai_2020.1-r1.2.0.tar.gz to a particular directory(here we take ~/Downloads as example) and install it to the roofs folder:
b) Download DNNDK runtime package vitis-ai_v1.2_dnndk.tar.gz to ~/Downloads and install it into rootfscd ~/Downloads # Or some place else you download the vitis_ai_2020.1-r1.2.0.tar.gz file tar -xzvf vitis_ai_2020.1-r1.2.0.tar.gz -C <full_pathname_to_zcu104_dpu_pkg>/pfm/sysroots/aarch64-xilinx-linux
cd ~/Downloads # Or some place else you download the file tar -xzvf vitis-ai_v1.2_dnndk.tar.gz cd vitis-ai_v1.2_dnndk ./install.sh <full_pathname_to_zcu104_dpu_pkg>/pfm/sysroots/aarch64-xilinx-linux
The install.sh copies dpu.xclbin from FAT32 partition to /usr/lib because DNNDK requires xclbin to be placed in this location. Now we install both the VAI lib and DNNDK packages into the rootfs set as Vitis sysroot, then we can build application on Vitis.
- Right click the hello_dpu project folder and select Build Project
- Find HWH file from your Vitis application folderhello_dpu/Hardware/dpu.build/link/vivado/vpl/prj/prj.srcs/sources_1/bd/system/hw_handoff/system.hwh
Or go to your Vitis application folder use commandfind -name *.hwh
to search for the file. - Copy the ref_files/Tool-Example folder provided by this Github repository to your Vitis AI download directory.
- Copy this HWH file into <Vitis-AI-download_directory>/Tool-Example folder.
- Go to <Vitis-AI-download_directory> folder and launch the docker.
- Use following command to activate TensorFlow tool conda environment:
conda activate vitis-ai-tensorflow
- Go to /workspace/Tool-Example folder and run
dlet -f ./system.hwh
.
You should get the running log like below:
(vitis-ai-tensorflow) wuxian@wuxian-Ubuntu1804:/workspace/Tool-Example$ dlet -f ./system.hwh
[DLet]Generate DPU DCF file dpu-06-18-2020-12-00.dcf successfully.
The DCF file name should be associated with the time and date you generating this file.
7. Open the arch.json file and make sure the "dcf" parameter is set with the name you got on the previous step:
"dcf" : "./dpu-06-18-2020-12-00.dcf",
8. Run commandsh download_model.sh
to download the Xilinx Model Zoo files for resnet-50.
9. Run commandsh custom_platform_compile.sh
, go to tf_resnetv1_50_imagenet_224_224_6.97G/vai_c_output_ZCU104/dpu_resnet50_0.elf to get the dpu_resnet50_0.elf file.
10. Copy that file to the src folder of Vitis application hello_dpu
11. Right click on the hello_dpu project folder in Vitis select *C/C++ Building Settings.
12. In Propery for Hello_DPU dialog box, select C/C++ Build->Settings->Tool Settings->GCC Host Linker->Miscellaneous->Other objects, add a new object: "${workspace_loc:/${ProjName}/src/dpu_resnet50_0.elf}"
, click Apply and Close.
13. Right click the hello_dpu project folder and select Build Project
Now you should get an updated hello_dpu with a size of about 20MB(the ConvNet model is involved).
- Copy all the files from sd_card folder inside your Vitis application like <hello_dpu_application_directory>/Hardware/sd_card/ to SD card, copy all the files under ref_files/boot_additional_files/ provided by this Github repository to SD card, set ZCU104 to SD boot mode and boot up the board, connect the board with serial port.
- Connect SSH:
a) Runifconfig
to get the IP address, here we take172.16.75.189
as example.
b) Using SSH terminal to connect ZCU104 with SSH:ssh -x [email protected]
, or use MobaXterm in Windows. - Mount SD card to mnt folder by running command:
mount /dev/mmcblk0p1 /mnt
. - Go to the /mnt folder and create a new folder named "package":
cd /mnt
mkdir package
-
Since this is a custom design the Vitis AI library, DNNDK and test images are not installed. We need to install them on board.
I would suggest you to refer to section "Setting Up the Target" of Vitis AI library readme file to install the Vitis AI library and refer to section "Setup Evaluation Board and run Vitis AI DNNDK samples" of DNNDK example readme file to install DNNDK and test images. If you feel difficult to do that please follow the steps below:
a) Download the Vitis AI Runtime 1.2 package Vitis AI Runtime 1.2.0
b) Copy the vitis-ai-runtime-1.2.0.tar.gz from host to board with the following command running on host:cd <path_to_vitis-ai-runtime-1.2.0.tar.gz> scp vitis-ai-runtime-1.2.0.tar.gz 172.16.75.189:/mnt/package
c) Untar the packet and install them one by one on target board:
cd /mnt/package tar -zxvf vitis-ai-runtime-1.2.0.tar.gz cd ./vitis-ai-runtime-1.2.0/aarch64/centos/ rpm -ivh --force --ignoresize libunilog-1.2.0-r10.aarch64.rpm rpm -ivh --force --ignoresize libxir-1.2.0-r12.aarch64.rpm rpm -ivh --force --ignoresize libtarget-factory-1.2.0-r10.aarch64.rpm rpm -ivh --force --ignoresize libvart-1.2.0-r16.aarch64.rpm rpm -ivh --force --ignoresize libvitis_ai_library-1.2.0-r15.aarch64.rpm
d) Download the package vitis-ai_v1.2_dnndk.tar.gz and package vitis-ai_v1.2_dnndk_sample_img.tar.gz, copy them to board:
scp vitis-ai_v1.2_dnndk.tar.gz [email protected]:/mnt/package scp vitis-ai_v1.2_dnndk_sample_img.tar.gz [email protected]:/mnt/package
e) Install DNNDK package like below:
cd /mnt/package cp vitis-ai_v1.2_dnndk.tar.gz ~/ cd ~/ tar -zxvf vitis-ai_v1.2_dnndk.tar.gz cd vitis-ai_v1.2_dnndk/ ./install.sh
g) Go back to /mnt/package folder and untar the dnndk example file:
cd /mnt/package tar -zxvf vitis-ai_v1.2_dnndk_sample_img.tar.gz
-
Go to the vitis_ai_dnndk_samples and run the hello_dpu application:
cd /mnt/package/vitis_ai_dnndk_samples
mkdir test
cd test
cp /mnt/hello_dpu ./
./hello_dpu
We store the hello_dpu to /mnt/package/vitis_ai_dnndk_samples/test folder to suit the relative path in my code, you can do that according to your code context. The hello_dpu is generated in Vitis application build and was copied to sd card from previous operation.
7. You should see the result like below:
Please refer to UG1144 if you would like to implement a ext4 rootfs.
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/index.html
https://github.com/Xilinx/Vitis-AI
https://github.com/Xilinx/Vitis_Embedded_Platform_Source
https://github.com/Xilinx/Vitis-AI-Tutorials/tree/Vitis-AI-Custom-Platform
https://github.com/Xilinx/Edge-AI-Platform-Tutorials/tree/3.1/docs/DPU-Integration
Note: If you would like to try with one click creating VAI platform flow it is recommended to try with the official platform source code for zcu102_dpu and zcu104_dpu.
https://www.xilinx.com/html_docs/xilinx2019_2/vitis_doc/Chunk2027126153.html#zks1565446519267
https://www.xilinx.com/html_docs/xilinx2019_2/vitis_doc/pjr1542153622642.html
https://www.xilinx.com/html_docs/xilinx2019_2/vitis_doc/rbk1547656041291.html