forked from alexanderkroner/saliency
-
Notifications
You must be signed in to change notification settings - Fork 5
/
data.py
executable file
·795 lines (553 loc) · 27.7 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
import os
import sys
import numpy as np
import tensorflow as tf
import config
import download
class SALICON:
"""This class represents the SALICON dataset. It consists of 10000 training
and 5000 validation images. The corresponding mouse tracking maps were
acquired from 16 observers during free-viewing of images for 5 seconds.
All stimuli are of size 480x640 pixels (height by width).
Attributes:
n_train: Number of training instances as defined in the dataset.
n_valid: Number of validation instances as defined in the dataset.
Returns:
tuple: A tuple that consists of dataset objects holding the training
and validation set instances respectively.
.. seealso:: M. Jiang, S. Huang, J. Duan, Q. Zhao, SALICON: Saliency in
context, Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2015) 1072–1080.
"""
n_train = 10000
n_valid = 5000
def __init__(self, data_path):
self._target_size = config.DIMS["image_size_salicon"]
self._dir_stimuli_train = data_path + "stimuli/train"
self._dir_stimuli_valid = data_path + "stimuli/val"
self._dir_saliency_train = data_path + "saliency/train"
self._dir_saliency_valid = data_path + "saliency/val"
if not os.path.exists(data_path):
parent_path = os.path.dirname(data_path[:-1])
parent_path = os.path.join(parent_path, "")
download.download_salicon(parent_path)
def load_data(self):
train_list_x = _get_file_list(self._dir_stimuli_train)
train_list_y = _get_file_list(self._dir_saliency_train)
_check_consistency(zip(train_list_x, train_list_y), 10000)
train_set = _fetch_dataset((train_list_x, train_list_y),
self._target_size, True)
valid_list_x = _get_file_list(self._dir_stimuli_valid)
valid_list_y = _get_file_list(self._dir_saliency_valid)
_check_consistency(zip(valid_list_x, valid_list_y), 5000)
valid_set = _fetch_dataset((valid_list_x, valid_list_y),
self._target_size, False)
return (train_set, valid_set)
class MIT1003:
"""This class represents the MIT1003 dataset. It consists of 1003 natural
images. The corresponding fixation maps were acquired from 15 observers
during free-viewing of images for 3 seconds. The largest dimension of
all stimuli is of size 1024 pixels.
Attributes:
n_train: Assigned number of training instances (must sum to 1003).
n_valid: Assigned number of validation instances (must sum to 1003).
Returns:
tuple: A tuple that consists of dataset objects holding the training
and validation set instances respectively.
.. seealso:: T. Judd, K. Ehinger, F. Durand, A. Torralba, Learning to
predict where humans look, Proceedings of the International
Conference on Computer Vision (2009) 2106–2113.
"""
n_train = 803
n_valid = 200
def __init__(self, data_path):
self._target_size = config.DIMS["image_size_mit1003"]
self._dir_stimuli = data_path + "stimuli"
self._dir_saliency = data_path + "saliency"
if not os.path.exists(data_path):
parent_path = os.path.dirname(data_path[:-1])
parent_path = os.path.join(parent_path, "")
download.download_mit1003(parent_path)
def load_data(self):
list_x = _get_file_list(self._dir_stimuli)
list_y = _get_file_list(self._dir_saliency)
_check_consistency(zip(list_x, list_y), 1003)
indices = _get_random_indices(1003)
excerpt = indices[:self.n_train]
train_list_x = [list_x[idx] for idx in excerpt]
train_list_y = [list_y[idx] for idx in excerpt]
train_set = _fetch_dataset((train_list_x, train_list_y),
self._target_size, True)
excerpt = indices[self.n_train:]
valid_list_x = [list_x[idx] for idx in excerpt]
valid_list_y = [list_y[idx] for idx in excerpt]
valid_set = _fetch_dataset((valid_list_x, valid_list_y),
self._target_size, False)
return (train_set, valid_set)
class CAT2000:
"""This class represents the CAT2000 dataset. It consists of 2000 images
evenly divided into 20 categories. The corresponding fixation maps were
acquired from 18 observers during free-viewing of images for 5 seconds.
All stimuli are of size 1080x1920 pixels (height by width).
Attributes:
n_train: Assigned number of training instances (must sum to 2000).
n_valid: Assigned number of validation instances (must sum to 2000).
Returns:
tuple: A tuple that consists of dataset objects holding the training
and validation set instances respectively.
.. seealso:: A. Borji, L. Itti, CAT2000: A large scale fixation dataset for
boosting saliency research, arXiv preprint arXiv:1505.03581
(2015).
"""
n_train = 1600
n_valid = 400
def __init__(self, data_path):
self._target_size = config.DIMS["image_size_cat2000"]
self._dir_stimuli = data_path + "stimuli"
self._dir_saliency = data_path + "saliency"
if not os.path.exists(data_path):
parent_path = os.path.dirname(data_path[:-1])
parent_path = os.path.join(parent_path, "")
download.download_cat2000(parent_path)
def load_data(self):
list_x = _get_file_list(self._dir_stimuli)
list_y = _get_file_list(self._dir_saliency)
_check_consistency(zip(list_x, list_y), 2000)
indices = _get_random_indices(100)
# sample uniformly from all 20 categories
ratio = self.n_train * 100 // 2000
excerpt = np.tile(indices[:ratio], 20)
for idx, _ in enumerate(excerpt):
excerpt[idx] = excerpt[idx] + idx // ratio * 100
train_list_x = [list_x[idx] for idx in excerpt]
train_list_y = [list_y[idx] for idx in excerpt]
train_set = _fetch_dataset((train_list_x, train_list_y),
self._target_size, True)
# sample uniformly from all 20 categories
ratio = self.n_valid * 100 // 2000
excerpt = np.tile(indices[-ratio:], 20)
for idx, _ in enumerate(excerpt):
excerpt[idx] = excerpt[idx] + idx // ratio * 100
valid_list_x = [list_x[idx] for idx in excerpt]
valid_list_y = [list_y[idx] for idx in excerpt]
valid_set = _fetch_dataset((valid_list_x, valid_list_y),
self._target_size, False)
return (train_set, valid_set)
class DUTOMRON:
"""This class represents the DUT-OMRON dataset. It consists of 5168 natural
images. The corresponding fixation maps were acquired from 5 observers
during free-viewing of images for 2 seconds. The largest dimension of
all stimuli is of size 401 pixels.
Attributes:
n_train: Assigned number of training instances (must sum to 850).
n_valid: Assigned number of validation instances (must sum to 850).
Returns:
tuple: A tuple that consists of dataset objects holding the training
and validation set instances respectively.
.. seealso:: C. Yang, L. Zhang, H. Lu, X. Ruan, M. H. Yang, Saliency detection
via graph-based manifold ranking, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2013)
3166-3173.
"""
n_train = 4168
n_valid = 1000
def __init__(self, data_path):
self._target_size = config.DIMS["image_size_dutomron"]
self._dir_stimuli = data_path + "stimuli"
self._dir_saliency = data_path + "saliency"
if not os.path.exists(data_path):
parent_path = os.path.dirname(data_path[:-1])
parent_path = os.path.join(parent_path, "")
download.download_dutomron(parent_path)
def load_data(self):
list_x = _get_file_list(self._dir_stimuli)
list_y = _get_file_list(self._dir_saliency)
_check_consistency(zip(list_x, list_y), 5168)
indices = _get_random_indices(5168)
excerpt = indices[:self.n_train]
train_list_x = [list_x[idx] for idx in excerpt]
train_list_y = [list_y[idx] for idx in excerpt]
train_set = _fetch_dataset((train_list_x, train_list_y),
self._target_size, True)
excerpt = indices[self.n_train:]
valid_list_x = [list_x[idx] for idx in excerpt]
valid_list_y = [list_y[idx] for idx in excerpt]
valid_set = _fetch_dataset((valid_list_x, valid_list_y),
self._target_size, False)
return (train_set, valid_set)
class PASCALS:
"""This class represents the PASCAL-S dataset. It consists of 850 natural
images. The corresponding fixation maps were acquired from 8 observers
during free-viewing of images for 2 seconds. The largest dimension of
all stimuli is of size 500 pixels.
Attributes:
n_train: Assigned number of training instances (must sum to 850).
n_valid: Assigned number of validation instances (must sum to 850).
Returns:
tuple: A tuple that consists of dataset objects holding the training
and validation set instances respectively.
.. seealso:: Y. Li, X. Hou, C. Koch, J. M. Rehg, A. L. Yuille, The secrets
of salient object segmentation, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2014)
280-287.
"""
n_train = 650
n_valid = 200
def __init__(self, data_path):
self._target_size = config.DIMS["image_size_pascals"]
self._dir_stimuli = data_path + "stimuli"
self._dir_saliency = data_path + "saliency"
if not os.path.exists(data_path):
parent_path = os.path.dirname(data_path[:-1])
parent_path = os.path.join(parent_path, "")
download.download_pascals(parent_path)
def load_data(self):
list_x = _get_file_list(self._dir_stimuli)
list_y = _get_file_list(self._dir_saliency)
_check_consistency(zip(list_x, list_y), 850)
indices = _get_random_indices(850)
excerpt = indices[:self.n_train]
train_list_x = [list_x[idx] for idx in excerpt]
train_list_y = [list_y[idx] for idx in excerpt]
train_set = _fetch_dataset((train_list_x, train_list_y),
self._target_size, True)
excerpt = indices[self.n_train:]
valid_list_x = [list_x[idx] for idx in excerpt]
valid_list_y = [list_y[idx] for idx in excerpt]
valid_set = _fetch_dataset((valid_list_x, valid_list_y),
self._target_size, False)
return (train_set, valid_set)
class OSIE:
"""This class represents the OSIE dataset. It consists of 700 natural
images. The corresponding fixation maps were acquired from 15 observers
during free-viewing of images for 3 seconds. All stimuli are of size
600x800 pixels (height by width).
Attributes:
n_train: Assigned number of training instances (must sum to 700).
n_valid: Assigned number of validation instances (must sum to 700).
Returns:
tuple: A tuple that consists of dataset objects holding the training
and validation set instances respectively.
.. seealso:: J. Xu, M. Jiang, S. Wang, M. S. Kankanhalli, Q. Zhao, Predicting
human gaze beyond pixels, Journal of Vision (2014).
"""
n_train = 500
n_valid = 200
def __init__(self, data_path):
self._target_size = config.DIMS["image_size_osie"]
self._dir_stimuli = data_path + "stimuli"
self._dir_saliency = data_path + "saliency"
if not os.path.exists(data_path):
parent_path = os.path.dirname(data_path[:-1])
parent_path = os.path.join(parent_path, "")
download.download_osie(parent_path)
def load_data(self):
list_x = _get_file_list(self._dir_stimuli)
list_y = _get_file_list(self._dir_saliency)
_check_consistency(zip(list_x, list_y), 700)
indices = _get_random_indices(700)
excerpt = indices[:self.n_train]
train_list_x = [list_x[idx] for idx in excerpt]
train_list_y = [list_y[idx] for idx in excerpt]
train_set = _fetch_dataset((train_list_x, train_list_y),
self._target_size, True)
excerpt = indices[self.n_train:]
valid_list_x = [list_x[idx] for idx in excerpt]
valid_list_y = [list_y[idx] for idx in excerpt]
valid_set = _fetch_dataset((valid_list_x, valid_list_y),
self._target_size, False)
return (train_set, valid_set)
class FIWI:
"""This class represents the FIWI dataset. It consists of 149 webpage
screenshots. The corresponding fixation maps were acquired from 11
observers during free-viewing of images for 5 seconds. All stimuli
are either of size 768x1360 or 768x1366 pixels (height by width).
Attributes:
n_train: Assigned number of training instances (must sum to 149).
n_valid: Assigned number of validation instances (must sum to 149).
Returns:
tuple: A tuple that consists of dataset objects holding the training
and validation set instances respectively.
.. seealso:: C. Shen, Q. Zhao, Webpage Saliency, European Conference on
Computer Vision (2014) 33-46.
"""
n_train = 99
n_valid = 50
def __init__(self, data_path):
self._target_size = config.DIMS["image_size_fiwi"]
self._dir_stimuli = data_path + "stimuli"
self._dir_saliency = data_path + "saliency"
if not os.path.exists(data_path):
parent_path = os.path.dirname(data_path[:-1])
parent_path = os.path.join(parent_path, "")
download.download_fiwi(parent_path)
def load_data(self):
list_x = _get_file_list(self._dir_stimuli)
list_y = _get_file_list(self._dir_saliency)
_check_consistency(zip(list_x, list_y), 149)
indices = _get_random_indices(149)
excerpt = indices[:self.n_train]
train_list_x = [list_x[idx] for idx in excerpt]
train_list_y = [list_y[idx] for idx in excerpt]
train_set = _fetch_dataset((train_list_x, train_list_y),
self._target_size, True)
excerpt = indices[self.n_train:]
valid_list_x = [list_x[idx] for idx in excerpt]
valid_list_y = [list_y[idx] for idx in excerpt]
valid_set = _fetch_dataset((valid_list_x, valid_list_y),
self._target_size, False)
return (train_set, valid_set)
class TEST:
"""This class represents test set instances used for inference through
a trained network. All stimuli are resized to the preferred spatial
dimensions of the chosen model. This can, however, lead to cases of
excessive image padding.
Returns:
object: A dataset object that holds all test set instances
specified under the path variable.
"""
def __init__(self, dataset, data_path):
self._target_size = config.DIMS["image_size_%s" % dataset]
self._dir_stimuli_test = data_path
def load_data(self):
test_list_x = _get_file_list(self._dir_stimuli_test)
test_set = _fetch_dataset(test_list_x, self._target_size,
False, online=True)
return test_set
def get_dataset_iterator(phase, dataset, data_path):
"""Entry point to make an initializable dataset iterator for either
training or testing a model by calling the respective dataset class.
Args:
phase (str): Holds the current phase, which can be "train" or "test".
dataset (str): Denotes the dataset to be used during training or the
suitable resizing procedure when testing a model.
data_path (str): Points to the directory where training or testing
data instances are stored.
Returns:
iterator: An initializable dataset iterator holding the relevant data.
initializer: An operation required to initialize the correct iterator.
"""
if phase == "train":
current_module = sys.modules[__name__]
class_name = "%s" % dataset.upper()
dataset_class = getattr(current_module, class_name)(data_path)
train_set, valid_set = dataset_class.load_data()
iterator = tf.data.Iterator.from_structure(train_set.output_types,
train_set.output_shapes)
next_element = iterator.get_next()
train_init_op = iterator.make_initializer(train_set)
valid_init_op = iterator.make_initializer(valid_set)
return next_element, train_init_op, valid_init_op
if phase == "test":
test_class = TEST(dataset, data_path)
test_set = test_class.load_data()
iterator = tf.data.Iterator.from_structure(test_set.output_types,
test_set.output_shapes)
next_element = iterator.get_next()
init_op = iterator.make_initializer(test_set)
return next_element, init_op
def postprocess_saliency_map(saliency_map, target_size):
"""This function resizes and crops a single saliency map to the original
dimensions of the input image. The output is then encoded as a jpeg
file suitable for saving to disk.
Args:
saliency_map (tensor, float32): 3D tensor that holds the values of a
saliency map in the range from 0 to 1.
target_size (tensor, int32): 1D tensor that specifies the size to which
the saliency map is resized and cropped.
Returns:
tensor, str: A tensor of the saliency map encoded as a jpeg file.
"""
saliency_map *= 255.0
saliency_map = _resize_image(saliency_map, target_size, True)
saliency_map = _crop_image(saliency_map, target_size)
saliency_map = tf.round(saliency_map)
saliency_map = tf.cast(saliency_map, tf.uint8)
saliency_map_jpeg = tf.image.encode_jpeg(saliency_map, "grayscale", 100)
return saliency_map_jpeg
def _fetch_dataset(files, target_size, shuffle, online=False):
"""Here the list of file directories is shuffled (only when training),
loaded, batched, and prefetched to ensure high GPU utilization.
Args:
files (list, str): A list that holds the paths to all file instances.
target_size (tuple, int): A tuple that specifies the size to which
the data will be reshaped.
shuffle (bool): Determines whether the dataset will be shuffled or not.
online (bool, optional): Flag that decides whether the batch size must
be 1 or can take any value. Defaults to False.
Returns:
object: A dataset object that contains the batched and prefetched data
instances along with their shapes and file paths.
"""
dataset = tf.data.Dataset.from_tensor_slices(files)
if shuffle:
dataset = dataset.shuffle(len(files[0]))
dataset = dataset.map(lambda *files: _parse_function(files, target_size),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
batch_size = 1 if online else config.PARAMS["batch_size"]
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(5)
return dataset
def _parse_function(files, target_size):
"""This function reads image data dependent on the image type and
whether it constitutes a stimulus or saliency map. All instances
are then reshaped and padded to yield the target dimensionality.
Args:
files (tuple, str): A tuple with the paths to all file instances.
The first element contains the stimuli and, if
present, the second one the ground truth maps.
target_size (tuple, int): A tuple that specifies the size to which
the data will be reshaped.
Returns:
list: A list that holds the image instances along with their
shapes and file paths.
"""
image_list = []
for count, filename in enumerate(files):
image_str = tf.read_file(filename)
channels = 3 if count == 0 else 1
image = tf.cond(tf.image.is_jpeg(image_str),
lambda: tf.image.decode_jpeg(image_str,
channels=channels),
lambda: tf.image.decode_png(image_str,
channels=channels))
original_size = tf.shape(image)[:2]
image = _resize_image(image, target_size)
image = _pad_image(image, target_size)
image_list.append(image)
image_list.append(original_size)
image_list.append(files)
return image_list
def _resize_image(image, target_size, overfull=False):
"""This resizing procedure preserves the original aspect ratio and might be
followed by padding or cropping. Depending on whether the target size is
smaller or larger than the current image size, the area or bicubic
interpolation method will be utilized.
Args:
image (tensor, uint8): A tensor with the values of an image instance.
target_size (tuple, int): A tuple that specifies the size to which
the data will be resized.
overfull (bool, optional): Denotes whether the resulting image will be
larger or equal to the specified target
size. This is crucial for the following
padding or cropping. Defaults to False.
Returns:
tensor, float32: 4D tensor that holds the values of the resized image.
.. seealso:: The reasoning for using either area or bicubic interpolation
methods is based on the OpenCV documentation recommendations.
[https://bit.ly/2XAavw0]
"""
current_size = tf.shape(image)[:2]
height_ratio = target_size[0] / current_size[0]
width_ratio = target_size[1] / current_size[1]
if overfull:
target_ratio = tf.maximum(height_ratio, width_ratio)
else:
target_ratio = tf.minimum(height_ratio, width_ratio)
target_size = tf.cast(current_size, tf.float64) * target_ratio
target_size = tf.cast(tf.round(target_size), tf.int32)
shrinking = tf.cond(tf.logical_or(current_size[0] > target_size[0],
current_size[1] > target_size[1]),
lambda: tf.constant(True),
lambda: tf.constant(False))
image = tf.expand_dims(image, 0)
image = tf.cond(shrinking,
lambda: tf.image.resize_area(image, target_size,
align_corners=True),
lambda: tf.image.resize_bicubic(image, target_size,
align_corners=True))
image = tf.clip_by_value(image[0], 0.0, 255.0)
return image
def _pad_image(image, target_size):
"""A single image, either stimulus or saliency map, will be padded
symmetrically with the constant value 126 or 0 respectively.
Args:
image (tensor, float32): 3D tensor with the values of the image data.
target_size (tuple, int): A tuple that specifies the size to which
the data will be resized.
Returns:
tensor, float32: 3D tensor that holds the values of the padded image.
"""
current_size = tf.shape(image)
pad_constant_value = tf.cond(tf.equal(current_size[2], 3),
lambda: tf.constant(126.0),
lambda: tf.constant(0.0))
pad_vertical = (target_size[0] - current_size[0]) / 2
pad_horizontal = (target_size[1] - current_size[1]) / 2
pad_top = tf.floor(pad_vertical)
pad_bottom = tf.ceil(pad_vertical)
pad_left = tf.floor(pad_horizontal)
pad_right = tf.ceil(pad_horizontal)
padding = [[pad_top, pad_bottom], [pad_left, pad_right], [0, 0]]
image = tf.pad(image, padding, constant_values=pad_constant_value)
return image
def _crop_image(image, target_size):
"""A single saliency map will be cropped according the specified target
size by extracting the central region of the image and correctly
removing the added padding.
Args:
image (tensor, float32): 3D tensor with the values of a saliency map.
target_size (tensor, int32): 2D tensor that specifies the size to
which the data will be cropped.
Returns:
tensor, float32: 3D tensor that holds the values of the saliency map
with cropped dimensionality.
"""
current_size = tf.shape(image)[:2]
crop_vertical = (current_size[0] - target_size[0]) / 2
crop_horizontal = (current_size[1] - target_size[1]) / 2
crop_top = tf.cast(tf.floor(crop_vertical), tf.int32)
crop_left = tf.cast(tf.floor(crop_horizontal), tf.int32)
border_bottom = crop_top + target_size[0]
border_right = crop_left + target_size[1]
image = image[crop_top:border_bottom, crop_left:border_right, :]
return image
def _get_file_list(data_path):
"""This function detects all image files within the specified parent
directory for either training or testing. The path content cannot
be empty, otherwise an error occurs.
Args:
data_path (str): Points to the directory where training or testing
data instances are stored.
Returns:
list, str: A sorted list that holds the paths to all file instances.
"""
data_list = []
if os.path.isfile(data_path):
data_list.append(data_path)
else:
for subdir, dirs, files in os.walk(data_path):
for file in files:
if file.lower().endswith((".png", ".jpg", ".jpeg")):
data_list.append(os.path.join(subdir, file))
data_list.sort()
if not data_list:
raise FileNotFoundError("No data was found")
return data_list
def _get_random_indices(list_length):
"""A helper function to generate an array of randomly shuffled indices
to divide the MIT1003 and CAT2000 datasets into training and validation
instances.
Args:
list_length (int): The number of indices that is randomly shuffled.
Returns:
array, int: A 1D array that contains the shuffled data indices.
"""
indices = np.arange(list_length)
prng = np.random.RandomState(42)
prng.shuffle(indices)
return indices
def _check_consistency(zipped_file_lists, n_total_files):
"""A consistency check that makes sure all files could successfully be
found and stimuli names correspond to the ones of ground truth maps.
Args:
zipped_file_lists (tuple, str): A tuple of train and valid path names.
n_total_files (int): The total number of files expected in the list.
"""
assert len(list(zipped_file_lists)) == n_total_files, "Files are missing"
for file_tuple in zipped_file_lists:
file_names = [os.path.basename(entry) for entry in list(file_tuple)]
file_names = [os.path.splitext(entry)[0] for entry in file_names]
file_names = [entry.replace("_fixMap", "") for entry in file_names]
file_names = [entry.replace("_fixPts", "") for entry in file_names]
assert len(set(file_names)) == 1, "File name mismatch"