You are given the root
of a full binary tree with the following properties:
- Leaf nodes have either the value
0
or1
, where0
representsFalse
and1
representsTrue
. - Non-leaf nodes have either the value
2
or3
, where2
represents the booleanOR
and3
represents the booleanAND
.
The evaluation of a node is as follows:
- If the node is a leaf node, the evaluation is the value of the node, i.e.
True
orFalse
. - Otherwise, evaluate the node's two children and apply the boolean operation of its value with the children's evaluations.
Return the boolean result of evaluating the root
node.
A full binary tree is a binary tree where each node has either 0
or 2
children.
A leaf node is a node that has zero children.
Input: root = [2,1,3,null,null,0,1] Output: true Explanation: The above diagram illustrates the evaluation process. The AND node evaluates to False AND True = False. The OR node evaluates to True OR False = True. The root node evaluates to True, so we return true.
Input: root = [0] Output: false Explanation: The root node is a leaf node and it evaluates to false, so we return false.
- The number of nodes in the tree is in the range
[1, 1000]
. 0 <= Node.val <= 3
- Every node has either
0
or2
children. - Leaf nodes have a value of
0
or1
. - Non-leaf nodes have a value of
2
or3
.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def evaluateTree(self, root: Optional[TreeNode]) -> bool:
if root.val == 0:
return False
elif root.val == 1:
return True
elif root.val == 2:
return self.evaluateTree(root.left) or self.evaluateTree(root.right)
else:
return self.evaluateTree(root.left) and self.evaluateTree(root.right)