You are given a positive integer n
representing the number of nodes of a Directed Acyclic Graph (DAG). The nodes are numbered from 0
to n - 1
(inclusive).
You are also given a 2D integer array edges
, where edges[i] = [fromi, toi]
denotes that there is a unidirectional edge from fromi
to toi
in the graph.
Return a list answer
, where answer[i]
is the list of ancestors of the ith
node, sorted in ascending order.
A node u
is an ancestor of another node v
if u
can reach v
via a set of edges.
Input: n = 8, edgeList = [[0,3],[0,4],[1,3],[2,4],[2,7],[3,5],[3,6],[3,7],[4,6]] Output: [[],[],[],[0,1],[0,2],[0,1,3],[0,1,2,3,4],[0,1,2,3]] Explanation: The above diagram represents the input graph. - Nodes 0, 1, and 2 do not have any ancestors. - Node 3 has two ancestors 0 and 1. - Node 4 has two ancestors 0 and 2. - Node 5 has three ancestors 0, 1, and 3. - Node 6 has five ancestors 0, 1, 2, 3, and 4. - Node 7 has four ancestors 0, 1, 2, and 3.
Input: n = 5, edgeList = [[0,1],[0,2],[0,3],[0,4],[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]] Output: [[],[0],[0,1],[0,1,2],[0,1,2,3]] Explanation: The above diagram represents the input graph. - Node 0 does not have any ancestor. - Node 1 has one ancestor 0. - Node 2 has two ancestors 0 and 1. - Node 3 has three ancestors 0, 1, and 2. - Node 4 has four ancestors 0, 1, 2, and 3.
1 <= n <= 1000
0 <= edges.length <= min(2000, n * (n - 1) / 2)
edges[i].length == 2
0 <= fromi, toi <= n - 1
fromi != toi
- There are no duplicate edges.
- The graph is directed and acyclic.
class Solution:
def getAncestors(self, n: int, edges: List[List[int]]) -> List[List[int]]:
indegrees = [0] * n
ancestors = [set() for _ in range(n)]
children = [[] for _ in range(n)]
nodes = []
answer = [[] for _ in range(n)]
for u, v in edges:
indegrees[v] += 1
children[u].append(v)
for i in range(n):
if indegrees[i] == 0:
nodes.append(i)
while nodes != []:
i = nodes.pop()
answer[i] = sorted(ancestors[i])
for j in children[i]:
indegrees[j] -= 1
ancestors[j].add(i)
ancestors[j] |= ancestors[i]
if indegrees[j] == 0:
nodes.append(j)
return answer