Skip to content

Latest commit

 

History

History
59 lines (49 loc) · 2.17 KB

File metadata and controls

59 lines (49 loc) · 2.17 KB

2078. Two Furthest Houses With Different Colors

There are n houses evenly lined up on the street, and each house is beautifully painted. You are given a 0-indexed integer array colors of length n, where colors[i] represents the color of the ith house.

Return the maximum distance between two houses with different colors.

The distance between the ith and jth houses is abs(i - j), where abs(x) is the absolute value of x.

Example 1:

Input: colors = [1,1,1,6,1,1,1]
Output: 3
Explanation: In the above image, color 1 is blue, and color 6 is red.
The furthest two houses with different colors are house 0 and house 3.
House 0 has color 1, and house 3 has color 6. The distance between them is abs(0 - 3) = 3.
Note that houses 3 and 6 can also produce the optimal answer.

Example 2:

Input: colors = [1,8,3,8,3]
Output: 4
Explanation: In the above image, color 1 is blue, color 8 is yellow, and color 3 is green.
The furthest two houses with different colors are house 0 and house 4.
House 0 has color 1, and house 4 has color 3. The distance between them is abs(0 - 4) = 4.

Example 3:

Input: colors = [0,1]
Output: 1
Explanation: The furthest two houses with different colors are house 0 and house 1.
House 0 has color 0, and house 1 has color 1. The distance between them is abs(0 - 1) = 1.

Constraints:

  • n == colors.length
  • 2 <= n <= 100
  • 0 <= colors[i] <= 100
  • Test data are generated such that at least two houses have different colors.

Solutions (Rust)

1. Solution

impl Solution {
    pub fn max_distance(colors: Vec<i32>) -> i32 {
        let n = colors.len();
        let mut ret = n - 1;

        while colors[0] == colors[ret] && colors[n - 1] == colors[n - 1 - ret] {
            ret -= 1;
        }

        ret as i32
    }
}