There is a party where n
friends numbered from 0
to n - 1
are attending. There is an infinite number of chairs in this party that are numbered from 0
to infinity
. When a friend arrives at the party, they sit on the unoccupied chair with the smallest number.
- For example, if chairs
0
,1
, and5
are occupied when a friend comes, they will sit on chair number2
.
When a friend leaves the party, their chair becomes unoccupied at the moment they leave. If another friend arrives at that same moment, they can sit in that chair.
You are given a 0-indexed 2D integer array times
where times[i] = [arrivali, leavingi]
, indicating the arrival and leaving times of the ith
friend respectively, and an integer targetFriend
. All arrival times are distinct.
Return the chair number that the friend numbered targetFriend
will sit on.
Input: times = [[1,4],[2,3],[4,6]], targetFriend = 1 Output: 1 Explanation: - Friend 0 arrives at time 1 and sits on chair 0. - Friend 1 arrives at time 2 and sits on chair 1. - Friend 1 leaves at time 3 and chair 1 becomes empty. - Friend 0 leaves at time 4 and chair 0 becomes empty. - Friend 2 arrives at time 4 and sits on chair 0. Since friend 1 sat on chair 1, we return 1.
Input: times = [[3,10],[1,5],[2,6]], targetFriend = 0 Output: 2 Explanation: - Friend 1 arrives at time 1 and sits on chair 0. - Friend 2 arrives at time 2 and sits on chair 1. - Friend 0 arrives at time 3 and sits on chair 2. - Friend 1 leaves at time 5 and chair 0 becomes empty. - Friend 2 leaves at time 6 and chair 1 becomes empty. - Friend 0 leaves at time 10 and chair 2 becomes empty. Since friend 0 sat on chair 2, we return 2.
n == times.length
2 <= n <= 104
times[i].length == 2
1 <= arrivali < leavingi <= 105
0 <= targetFriend <= n - 1
- Each
arrivali
time is distinct.
use std::collections::BinaryHeap;
impl Solution {
pub fn smallest_chair(times: Vec<Vec<i32>>, target_friend: i32) -> i32 {
let target_arrival = times[target_friend as usize][0];
let mut chair_inf = 0;
let mut chair_heap = BinaryHeap::new();
let mut leaving_heap = BinaryHeap::new();
let mut times = times;
times.sort_unstable();
for time in × {
while -leaving_heap.peek().unwrap_or(&(-100001, 0)).0 <= time[0] {
chair_heap.push(leaving_heap.pop().unwrap().1);
}
match chair_heap.pop() {
Some(chair) if time[0] == target_arrival => return -chair,
Some(chair) => leaving_heap.push((-time[1], chair)),
None if time[0] == target_arrival => return chair_inf,
None => {
leaving_heap.push((-time[1], -chair_inf));
chair_inf += 1;
}
}
}
unreachable!()
}
}