Skip to content

Latest commit

 

History

History
59 lines (49 loc) · 1.86 KB

File metadata and controls

59 lines (49 loc) · 1.86 KB

1448. Count Good Nodes in Binary Tree

Given a binary tree root, a node X in the tree is named good if in the path from root to X there are no nodes with a value greater than X.

Return the number of good nodes in the binary tree.

Example 1:

Input: root = [3,1,4,3,null,1,5]
Output: 4
Explanation: Nodes in blue are good.
Root Node (3) is always a good node.
Node 4 -> (3,4) is the maximum value in the path starting from the root.
Node 5 -> (3,4,5) is the maximum value in the path
Node 3 -> (3,1,3) is the maximum value in the path.

Example 2:

Input: root = [3,3,null,4,2]
Output: 3
Explanation: Node 2 -> (3, 3, 2) is not good, because "3" is higher than it.

Example 3:

Input: root = [1]
Output: 1
Explanation: Root is considered as good.

Constraints:

  • The number of nodes in the binary tree is in the range [1, 10^5].
  • Each node's value is between [-10^4, 10^4].

Solutions (Python)

1. DFS

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def goodNodes(self, root: TreeNode) -> int:
        def foo(root: TreeNode, max_val: int) -> int:
            max_val = max(max_val, root.val)

            ret = 1 if root.val >= max_val else 0
            ret += foo(root.left, max_val) if root.left else 0
            ret += foo(root.right, max_val) if root.right else 0

            return ret

        return foo(root, -10000)