Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container and n is at least 2.
The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
Example:
Input: [1,8,6,2,5,4,8,3,7] Output: 49
impl Solution {
pub fn max_area(height: Vec<i32>) -> i32 {
let mut most = 0;
for i in 0..height.len() {
for j in (i + 1)..height.len() {
most = most.max((j - i) as i32 * height[i].min(height[j]));
}
}
most
}
}
impl Solution {
pub fn max_area(height: Vec<i32>) -> i32 {
let mut l = 0;
let mut r = height.len() - 1;
let mut most = 0;
while l < r {
most = most.max((r - l) as i32 * height[l].min(height[r]));
if height[l] < height[r] {
l += 1;
} else {
r -= 1;
}
}
most
}
}
int maxArea(int* height, int heightSize){
int *right,*left;
int volume = 0;
left = height;
right = height + heightSize -1;
for (heightSize--; heightSize != 0; heightSize--)
{
if (*right > *left)
{
volume = ((*left) * heightSize > volume) ? *left * heightSize : volume;
left++;
}
else
{
volume = ((*right) * heightSize > volume) ? *right * heightSize : volume;
right--;
}
}
return volume;
}