-
Notifications
You must be signed in to change notification settings - Fork 0
/
SHAP_batch_gpu1.py
160 lines (129 loc) · 5.28 KB
/
SHAP_batch_gpu1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch, torchvision
from torch import nn
from torchvision import transforms, models, datasets
import shap
import json
import numpy as np
from matplotlib import pyplot as plt
import os
import time
from srblib import abs_path
from PIL import ImageFilter, Image
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.models as models
from tqdm import tqdm
import shutil
import skimage
from skimage.transform import resize
val_dir = './val'
imagenet_val_xml_path = './val_bb'
imagenet_val_path = './val/'
base_img_dir = abs_path(imagenet_val_path)
input_dir_path = 'images_list.txt'
text_file = abs_path(input_dir_path)
imagenet_class_mappings = './imagenet_class_mappings'
img_name_list = []
with open(text_file, 'r') as f:
for line in f:
img_name_list.append(line.split('\n')[0])
def imagenet_label_mappings():
fileName = os.path.join(imagenet_class_mappings, 'imagenet_label_mapping')
with open(fileName, 'r') as f:
image_label_mapping = {int(x.split(":")[0]): x.split(":")[1].strip()
for x in f.readlines() if len(x.strip()) > 0}
return image_label_mapping
class DataProcessing:
def __init__(self, data_path, transform, img_idxs=[0, 1], if_noise=0, noise_var=0.0):
self.data_path = data_path
self.transform = transform
self.if_noise = if_noise
self.noise_mean = 0
self.noise_var = noise_var
img_list = img_name_list[img_idxs[0]:img_idxs[1]]
self.img_filenames = [os.path.join(data_path, f'{i}.JPEG') for i in img_list]
def __getitem__(self, index):
img = Image.open(os.path.join(self.data_path, self.img_filenames[index])).convert('RGB')
target = self.get_image_class(os.path.join(self.data_path, self.img_filenames[index]))
if self.if_noise == 1:
img = skimage.util.random_noise(np.asarray(img), mode='gaussian',
mean=self.noise_mean, var=self.noise_var,
) # numpy, dtype=float64,range (0, 1)
img = Image.fromarray(np.uint8(img * 255))
# print(img2.max(), img2.min())
img = self.transform(img)
return img, target, os.path.join(self.data_path, self.img_filenames[index])
# return img, target
def __len__(self):
return len(self.img_filenames)
def get_image_class(self, filepath):
# ImageNet 2012 validation set images?
with open(os.path.join(imagenet_class_mappings, "ground_truth_val2012")) as f:
ground_truth_val2012 = {x.split()[0]: int(x.split()[1])
for x in f.readlines() if len(x.strip()) > 0}
def get_class(f):
ret = ground_truth_val2012.get(f, None)
return ret
image_class = get_class(filepath.split('/')[-1])
return image_class
transform_val = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
# Plots image from tensor
def tensor_imshow(inp, title=None, **kwargs):
"""Imshow for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
# Mean and std for ImageNet
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp, **kwargs)
if title is not None:
plt.title(title)
plt.axis('off')
plt.show()
init_time = time.time()
val_dataset = DataProcessing(base_img_dir, transform_val, img_idxs=[100, 200], if_noise=0, noise_var=0.0)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=50, shuffle=False, num_workers=24, pin_memory=True)
# especificar cual gpu 0 o 1
torch.cuda.set_device(1)
# load the model
modelo = 'alexnet'
# load the model
if modelo == 'googlenet':
model = models.googlenet(pretrained=True)
elif modelo == 'vgg16':
model = models.vgg16(pretrained=True)
elif modelo == 'resnet50':
model = models.resnet50(pretrained=True)
elif modelo == 'alexnet':
model = models.alexnet(pretrained=True)
model.cuda()
model.eval()
im_label_map = imagenet_label_mappings()
iterator = tqdm(enumerate(val_loader), total=len(val_loader), desc='batch')
save_path = './{}_SHAP'.format(modelo)
for i, (images, target, path) in iterator:
images = images.cuda()
if modelo == 'googlenet':
e = shap.GradientExplainer((model, model.conv2), images)
elif modelo == 'resnet50':
e = shap.GradientExplainer((model, model.layer1[0].conv1), images)
elif modelo == 'vgg16':
e = shap.GradientExplainer((model, model.features[7]), images)
elif modelo == 'alexnet':
e = shap.GradientExplainer((model, model.features[3]), images)
shap_values, indexes = e.shap_values(images, ranked_outputs=1, nsamples=200)
heatmap = np.clip(shap_values[0].sum(1), 0, 1)
for j, file_name in enumerate(path):
mask_file = ('{}_mask.npy'.format(file_name.split('/')[-1].split('.JPEG')[0]))
np.save(os.path.abspath(os.path.join(save_path, mask_file)), resize(heatmap[j], (224, 224)))
# plt.imshow(heatmap[j])
# plt.show()
print('Time taken: {:.3f}'.format(time.time() - init_time))