Skip to content

Latest commit

 

History

History
629 lines (460 loc) · 20.2 KB

DOCKER.md

File metadata and controls

629 lines (460 loc) · 20.2 KB

Docker Setup

Leverage Docker to create a consistent and reproducible environment for running LayerSkip without requiring GPU support. This setup ensures that all dependencies are managed efficiently and secrets like the HuggingFace token are handled securely.

Prerequisites

  1. Docker Installed: Ensure Docker is installed on your machine. Get Docker

  2. HuggingFace Token: Obtain your HuggingFace access token. HuggingFace Tokens

1. Building the Docker Image

Follow these steps to build the Docker image for LayerSkip:

  1. Clone the Repository:

     git clone [email protected]:facebookresearch/LayerSkip.git
     cd LayerSkip
  2. Ensure Dockerfile and Entrypoint Script are Present:
    Make sure the Dockerfile, entrypoint.sh, and .dockerignore are located in the root directory of your project as shown below:

    .
    ├── Dockerfile
    ├── entrypoint.sh
    ├── .dockerignore
    ├── arguments.py
    ├── benchmark.py
    ├── CODE_OF_CONDUCT.md
    ├── CONTRIBUTING.md
    ├── correctness.py
    ├── data.py
    ├── DOCKER.md
    ├── eval.py
    ├── generate.py
    ├── LICENSE
    ├── README.md
    ├── requirements.txt
    ├── self_speculation
    │   ├── autoregressive_generator.py
    │   ├── generator_base.py
    │   ├── llama_model_utils.py
    │   ├── self_speculation_generator.py
    │   └── speculative_streamer.py
    ├── sweep.py
    └── utils.py
    
  3. Build the Docker Image:

    docker build -t layerskip:latest .
    • Explanation:
      • -t layerskip:latest: Tags the image as layerskip with the latest tag.
      • .: Specifies the current directory as the build context.

    Note: The build process may take several minutes as it installs all dependencies.

2. Running the Docker Container

Once the Docker image is built, you can run your LayerSkip scripts inside the container. Below are instructions and examples for executing different scripts.

Basic Command Structure

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    layerskip:latest \
    python your_script.py --help
  • Flags and Arguments:
    • -it: Runs the container in interactive mode with a pseudo-TTY.
    • --rm: Automatically removes the container when it exits.
    • -e HUGGINGFACE_TOKEN=your_huggingface_token_here: Sets the HUGGINGFACE_TOKEN environment variable inside the container. Replace your_huggingface_token_here with your actual token.
    • layerskip:latest: Specifies the Docker image to use.
    • python your_script.py --help: The command to execute inside the container. Replace your_script.py --help with your desired script and arguments.

Examples

2.1. Generate Text

Run the generate.py script in interactive mode using regular autoregressive decoding:

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    layerskip:latest \
    python generate.py --model facebook/layerskip-llama2-7B \
                        --sample True \
                        --max_steps 512

To observe speedup with self-speculative decoding, specify --exit_layer and --num_speculations:

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    layerskip:latest \
    python generate.py --model facebook/layerskip-llama2-7B \
                        --sample True \
                        --max_steps 512 \
                        --generation_strategy self_speculative \
                        --exit_layer 8 \
                        --num_speculations 6
2.2. Benchmark

Benchmark the model on a specific dataset:

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    -v /path/on/host/logs:/app/logs \
    layerskip:latest \
    python benchmark.py --model facebook/layerskip-llama2-7B \
                         --dataset cnn_dm_summarization \
                         --num_samples 100 \
                         --generation_strategy self_speculative \
                         --exit_layer 8 \
                         --num_speculations 6 \
                         --output_dir /app/logs
  • Explanation:
    • -v /path/on/host/logs:/app/logs: Mounts the host directory /path/on/host/logs to the container's /app/logs directory, ensuring that logs are saved on the host.
2.3. Evaluate

Evaluate the model using the Eleuther Language Model Evaluation Harness:

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    -v /path/on/host/logs:/app/logs \
    layerskip:latest \
    python eval.py --model facebook/layerskip-llama2-7B \
                    --tasks gsm8k \
                    --limit 10 \
                    --generation_strategy self_speculative \
                    --exit_layer 8 \
                    --num_speculations 6 \
                    --output_dir /app/logs
2.4. Sweep

Perform a sweep over different exit_layer and num_speculations hyperparameters:

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    -v /path/on/host/sweep:/app/sweep \
    layerskip:latest \
    python sweep.py --model facebook/layerskip-llama2-7B \
                     --dataset human_eval \
                     --generation_strategy self_speculative \
                     --num_samples 150 \
                     --max_steps 256 \
                     --output_dir /app/sweep \
                     --sample False
2.5. Correctness Check

Verify the correctness of self-speculative decoding:

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    -v /path/on/host/correctness:/app/correctness \
    layerskip:latest \
    python correctness.py --model facebook/layerskip-llama2-7B \
                            --dataset human_eval \
                            --generation_strategy self_speculative \
                            --num_speculations 6 \
                            --exit_layer 4 \
                            --num_samples 10 \
                            --sample False \
                            --output_dir /app/correctness
  • Explanation:
    • -v /path/on/host/correctness:/app/correctness: Mounts the host directory /path/on/host/correctness to the container's /app/correctness directory, ensuring that correctness metrics are saved on the host.

3. Handling Output and Logs

To persist outputs and logs generated by your scripts, mount host directories to the corresponding directories inside the Docker container using the -v flag. This ensures that all results are stored on your host machine and are not lost when the container is removed.

Example: Mounting Logs Directory

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    -v /path/on/host/logs:/app/logs \
    layerskip:latest \
    python benchmark.py --model facebook/layerskip-llama2-7B \
                         --dataset human_eval \
                         --num_samples 100 \
                         --generation_strategy self_speculative \
                         --exit_layer 8 \
                         --num_speculations 6 \
                         --output_dir /app/logs

4. Environment Variables Security

Important: Never hardcode sensitive information like the HuggingFace token directly into the Dockerfile or your scripts. Always pass them securely at runtime using environment variables.

Passing Environment Variables Securely

When running the Docker container, pass the HuggingFace token using the -e flag:

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    layerskip:latest \
    python generate.py --help

Using Docker Secrets (Advanced)

For enhanced security, especially in production environments, consider using Docker secrets to manage sensitive data. This approach is more secure than passing environment variables directly.

Example Using Docker Secrets (Docker Swarm):

  1. Create a Secret:

    echo "your_huggingface_token_here" | docker secret create huggingface_token -
  2. Update entrypoint.sh to Read the Secret:

    #!/bin/bash
    # entrypoint.sh
    
    # Activate the Conda environment
    source /opt/conda/etc/profile.d/conda.sh
    conda activate layer_skip
    
    # Read HuggingFace token from Docker secret
    export HUGGINGFACE_TOKEN=$(cat /run/secrets/huggingface_token)
    
    # Execute the passed command
    exec "$@"
  3. Deploy the Service with the Secret:

    docker service create --name layerskip_service \
        --secret huggingface_token \
        layerskip:latest \
        python generate.py --help

Note: Docker secrets are primarily designed for use with Docker Swarm. If you're not using Swarm, passing environment variables securely as shown earlier is the recommended approach.

5. Additional Recommendations

5.1. Caching HuggingFace Models

To avoid re-downloading models every time you run the container, mount the HuggingFace cache directory:

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    -v /path/on/host/huggingface_cache:/root/.cache/huggingface \
    layerskip:latest \
    python generate.py --help
  • Explanation:
    • -v /path/on/host/huggingface_cache:/root/.cache/huggingface: Mounts the host directory to the container's HuggingFace cache directory, speeding up model loading times.

5.2. Optimizing Docker Layers

  • Leverage Docker Caching: By copying requirements.txt and installing dependencies before copying the rest of the code, Docker can cache these layers and speed up subsequent builds when dependencies haven't changed.

  • Combine RUN Commands: Reduce the number of Docker layers by combining multiple RUN commands where possible.

    Example:

    RUN conda install pytorch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 cpuonly -c pytorch -y && \
        pip install --upgrade pip && \
        pip install --no-cache-dir -r /app/requirements.txt

5.3. Port Exposures

If any of your scripts run a web server or need specific ports exposed, add the EXPOSE directive in the Dockerfile and map the ports when running the container.

Example: Exposing Port 8000

  1. Update Dockerfile:

    EXPOSE 8000
  2. Run the Container with Port Mapping:

    docker run -it --rm \
        -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
        -p 8000:8000 \
        layerskip:latest \
        python your_web_server_script.py

Testing the Docker Container Without a HuggingFace Token

1. Verify Python and PyTorch Installation

First, ensure that Python and PyTorch are correctly installed in your Docker image.

docker run -it --rm layerskip:latest python -c "import torch; print(torch.__version__)"

Expected Output:

2.2.1

This confirms that PyTorch version 2.2.1 is installed.

2. Check Available Scripts and Help Messages

Ensure that your scripts are accessible and functioning as expected by checking their help messages. This helps verify that all dependencies are correctly installed.

  • Generate Script:

    docker run -it --rm layerskip:latest python generate.py --help

    Expected Output:

    Displays the help message for generate.py, listing available arguments and usage instructions.

  • Benchmark Script:

    docker run -it --rm layerskip:latest python benchmark.py --help

    Expected Output:

    Displays the help message for benchmark.py.

  • Evaluate Script:

    docker run -it --rm layerskip:latest python eval.py --help

    Expected Output:

    Displays the help message for eval.py.

  • Sweep Script:

    docker run -it --rm layerskip:latest python sweep.py --help

    Expected Output:

    Displays the help message for sweep.py.

  • Correctness Script:

    docker run -it --rm layerskip:latest python correctness.py --help

    Expected Output:

    Displays the help message for correctness.py.

3. Check Environment Variables

Ensure that environment variables are correctly set up within the Docker container.

docker run -it --rm layerskip:latest bash -c 'echo $HUGGINGFACE_TOKEN'

Expected Output:

If you haven't set the HUGGINGFACE_TOKEN when running the container, this will likely be empty or show a default placeholder. This is expected since you don't have the token yet.

4. Test with a Dummy HuggingFace Token (Optional)

Even without a valid token, you can pass a dummy value to ensure that environment variables are handled correctly. This won't allow you to access models, but it confirms that the token is being set.

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=dummy_token \
    layerskip:latest \
    python generate.py --help

Expected Output:

Displays the help message for generate.py without attempting to access any models, thereby avoiding authentication errors.

Running Scripts Inside the Docker Container Once You Have a HuggingFace Token

Once you obtain your HuggingFace token, you can run your scripts with proper authentication. Here's how to proceed:

1. Obtain Your HuggingFace Token

Follow these steps to get your HuggingFace token:

  1. Create a HuggingFace Account: If you haven't already, create an account on HuggingFace.

  2. Generate a Token:

    • Navigate to your account settings.
    • Go to the "Access Tokens" section.
    • Click on "New Token" and follow the prompts to generate a token.
    • Note: Keep your token secure and do not share it publicly.

2. Run Your Scripts with the Token

Replace your_huggingface_token_here with your actual token in the following commands.

2.1. Generate Text with Self-Speculative Decoding

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    layerskip:latest \
    python generate.py --model facebook/layerskip-llama2-7B \
                        --sample True \
                        --max_steps 512 \
                        --generation_strategy self_speculative \
                        --exit_layer 8 \
                        --num_speculations 6

2.2. Benchmarking

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    -v /path/on/host/logs:/app/logs \
    layerskip:latest \
    python benchmark.py --model facebook/layerskip-llama2-7B \
                         --dataset cnn_dm_summarization \
                         --num_samples 100 \
                         --generation_strategy self_speculative \
                         --exit_layer 8 \
                         --num_speculations 6 \
                         --output_dir /app/logs
  • Explanation:
    • -v /path/on/host/logs:/app/logs: Mounts the host directory /path/on/host/logs to the container's /app/logs directory, ensuring logs are saved on the host.

2.3. Evaluate

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    -v /path/on/host/logs:/app/logs \
    layerskip:latest \
    python eval.py --model facebook/layerskip-llama2-7B \
                    --tasks gsm8k \
                    --limit 10 \
                    --generation_strategy self_speculative \
                    --exit_layer 8 \
                    --num_speculations 6 \
                    --output_dir /app/logs

2.4. Sweep

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    -v /path/on/host/sweep:/app/sweep \
    layerskip:latest \
    python sweep.py --model facebook/layerskip-llama2-7B \
                     --dataset human_eval \
                     --generation_strategy self_speculative \
                     --num_samples 150 \
                     --max_steps 256 \
                     --output_dir /app/sweep \
                     --sample False

2.5. Correctness Check

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    -v /path/on/host/correctness:/app/correctness \
    layerskip:latest \
    python correctness.py --model facebook/layerskip-llama2-7B \
                            --dataset human_eval \
                            --generation_strategy self_speculative \
                            --num_speculations 6 \
                            --exit_layer 4 \
                            --num_samples 10 \
                            --sample False \
                            --output_dir /app/correctness

Summary

  • Without a HuggingFace Token:

    • Run help commands to ensure scripts are accessible.
    • Verify Python and PyTorch installations.
    • Check environment variable settings.
  • With a HuggingFace Token:

    • Run your scripts as intended by passing the token via the -e flag.
    • Mount host directories for logs and outputs as needed.

Additional Recommendations

1. Caching HuggingFace Models

To avoid re-downloading models every time you run the container, mount the HuggingFace cache directory:

docker run -it --rm \
    -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
    -v /path/on/host/huggingface_cache:/root/.cache/huggingface \
    layerskip:latest \
    python generate.py --help
  • Explanation:
    • -v /path/on/host/huggingface_cache:/root/.cache/huggingface: Mounts the host directory to the container's HuggingFace cache directory, speeding up model loading times.

2. Environment Variables Security

  • Avoid Hardcoding Tokens:
    Never hardcode your HuggingFace tokens in the Dockerfile or scripts. Always pass them as environment variables at runtime.

  • Using Docker Secrets (Advanced):
    For enhanced security, especially in production environments, consider using Docker secrets or other secret management tools.

    Example Using Docker Secrets (Docker Swarm):

    1. Create a Secret:

      echo "your_huggingface_token_here" | docker secret create huggingface_token -
    2. Update entrypoint.sh to Read the Secret:

      #!/bin/bash
      # entrypoint.sh
      
      # Activate the Conda environment
      source /opt/conda/etc/profile.d/conda.sh
      conda activate layer_skip
      
      # Read HuggingFace token from Docker secret
      export HUGGINGFACE_TOKEN=$(cat /run/secrets/huggingface_token)
      
      # Execute the passed command
      exec "$@"
    3. Deploy the Service with the Secret:

      docker service create --name layerskip_service \
          --secret huggingface_token \
          layerskip:latest \
          python generate.py --help

    Note: Docker secrets are primarily designed for use with Docker Swarm. If you're not using Swarm, passing environment variables securely as shown earlier is the recommended approach.

3. Optimizing Docker Layers

  • Leverage Docker Caching:
    By copying requirements.txt and installing dependencies before copying the rest of the code, Docker can cache these layers and speed up subsequent builds when dependencies haven't changed.

  • Combine RUN Commands:
    Reduce the number of Docker layers by combining multiple RUN commands where possible.

    Example:

    RUN conda install pytorch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 cpuonly -c pytorch -y && \
        pip install --upgrade pip && \
        pip install --no-cache-dir -r /app/requirements.txt

4. Port Exposures

If any of your scripts run a web server or need specific ports exposed, add the EXPOSE directive in the Dockerfile and map the ports when running the container.

Example: Exposing Port 8000

  1. Update Dockerfile:

    EXPOSE 8000
  2. Run the Container with Port Mapping:

    docker run -it --rm \
        -e HUGGINGFACE_TOKEN=your_huggingface_token_here \
        -p 8000:8000 \
        layerskip:latest \
        python your_web_server_script.py