-
Notifications
You must be signed in to change notification settings - Fork 172
/
evaluation.py
465 lines (392 loc) · 17.9 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
"""Script for evaluation
This is the evaluation script for image denoising project.
Author: You-Yi Jau, Yiqian Wang
Date: 2020/03/30
"""
import matplotlib
matplotlib.use('Agg') # solve error of tk
import numpy as np
from evaluations.descriptor_evaluation import compute_homography
from evaluations.detector_evaluation import compute_repeatability
import cv2
import matplotlib.pyplot as plt
import logging
import os
from tqdm import tqdm
from utils.draw import plot_imgs
from utils.logging import *
def draw_matches_cv(data, matches, plot_points=True):
if plot_points:
keypoints1 = [cv2.KeyPoint(p[1], p[0], 1) for p in data['keypoints1']]
keypoints2 = [cv2.KeyPoint(p[1], p[0], 1) for p in data['keypoints2']]
else:
matches_pts = data['matches']
keypoints1 = [cv2.KeyPoint(p[0], p[1], 1) for p in matches_pts]
keypoints2 = [cv2.KeyPoint(p[2], p[3], 1) for p in matches_pts]
print(f"matches_pts: {matches_pts}")
# keypoints1, keypoints2 = [], []
inliers = data['inliers'].astype(bool)
# matches = np.array(data['matches'])[inliers].tolist()
# matches = matches[inliers].tolist()
def to3dim(img):
if img.ndim == 2:
img = img[:, :, np.newaxis]
return img
img1 = to3dim(data['image1'])
img2 = to3dim(data['image2'])
img1 = np.concatenate([img1, img1, img1], axis=2)
img2 = np.concatenate([img2, img2, img2], axis=2)
return cv2.drawMatches(img1, keypoints1, img2, keypoints2, matches,
None, matchColor=(0,255,0), singlePointColor=(0, 0, 255))
def isfloat(value):
try:
float(value)
return True
except ValueError:
return False
def find_files_with_ext(directory, extension='.npz', if_int=True):
# print(os.listdir(directory))
list_of_files = []
import os
if extension == ".npz":
for l in os.listdir(directory):
if l.endswith(extension):
list_of_files.append(l)
# print(l)
if if_int:
list_of_files = [e for e in list_of_files if isfloat(e[:-4])]
return list_of_files
def to3dim(img):
if img.ndim == 2:
img = img[:, :, np.newaxis]
return img
def evaluate(args, **options):
# path = '/home/yoyee/Documents/SuperPoint/superpoint/logs/outputs/superpoint_coco/'
path = args.path
files = find_files_with_ext(path)
correctness = []
est_H_mean_dist = []
repeatability = []
mscore = []
mAP = []
localization_err = []
rep_thd = 3
save_file = path + "/result.txt"
inliers_method = 'cv'
compute_map = True
verbose = True
top_K = 1000
print("top_K: ", top_K)
reproduce = True
if reproduce:
logging.info("reproduce = True")
np.random.seed(0)
print(f"test random # : np({np.random.rand(1)})")
# create output dir
if args.outputImg:
path_warp = path+'/warping'
os.makedirs(path_warp, exist_ok=True)
path_match = path + '/matching'
os.makedirs(path_match, exist_ok=True)
path_rep = path + '/repeatibility' + str(rep_thd)
os.makedirs(path_rep, exist_ok=True)
# for i in range(2):
# f = files[i]
print(f"file: {files[0]}")
files.sort(key=lambda x: int(x[:-4]))
from numpy.linalg import norm
from utils.draw import draw_keypoints
from utils.utils import saveImg
for f in tqdm(files):
f_num = f[:-4]
data = np.load(path + '/' + f)
print("load successfully. ", f)
# unwarp
# prob = data['prob']
# warped_prob = data['prob']
# desc = data['desc']
# warped_desc = data['warped_desc']
# homography = data['homography']
real_H = data['homography']
image = data['image']
warped_image = data['warped_image']
keypoints = data['prob'][:, [1, 0]]
print("keypoints: ", keypoints[:3,:])
warped_keypoints = data['warped_prob'][:, [1, 0]]
print("warped_keypoints: ", warped_keypoints[:3,:])
# print("Unwrap successfully.")
if args.repeatibility:
rep, local_err = compute_repeatability(data, keep_k_points=top_K, distance_thresh=rep_thd, verbose=False)
repeatability.append(rep)
print("repeatability: %.2f"%(rep))
if local_err > 0:
localization_err.append(local_err)
print('local_err: ', local_err)
if args.outputImg:
# img = to3dim(image)
img = image
pts = data['prob']
img1 = draw_keypoints(img*255, pts.transpose())
# img = to3dim(warped_image)
img = warped_image
pts = data['warped_prob']
img2 = draw_keypoints(img*255, pts.transpose())
plot_imgs([img1.astype(np.uint8), img2.astype(np.uint8)], titles=['img1', 'img2'], dpi=200)
plt.title("rep: " + str(repeatability[-1]))
plt.tight_layout()
plt.savefig(path_rep + '/' + f_num + '.png', dpi=300, bbox_inches='tight')
pass
if args.homography:
# estimate result
##### check
homography_thresh = [1,3,5,10,20,50]
#####
result = compute_homography(data, correctness_thresh=homography_thresh)
correctness.append(result['correctness'])
# est_H_mean_dist.append(result['mean_dist'])
# compute matching score
def warpLabels(pnts, homography, H, W):
import torch
"""
input:
pnts: numpy
homography: numpy
output:
warped_pnts: numpy
"""
from utils.utils import warp_points
from utils.utils import filter_points
pnts = torch.tensor(pnts).long()
homography = torch.tensor(homography, dtype=torch.float32)
warped_pnts = warp_points(torch.stack((pnts[:, 0], pnts[:, 1]), dim=1),
homography) # check the (x, y)
warped_pnts = filter_points(warped_pnts, torch.tensor([W, H])).round().long()
return warped_pnts.numpy()
from numpy.linalg import inv
H, W = image.shape
unwarped_pnts = warpLabels(warped_keypoints, inv(real_H), H, W)
score = (result['inliers'].sum() * 2) / (keypoints.shape[0] + unwarped_pnts.shape[0])
print("m. score: ", score)
mscore.append(score)
# compute map
if compute_map:
def getMatches(data):
from models.model_wrap import PointTracker
desc = data['desc']
warped_desc = data['warped_desc']
nn_thresh = 1.2
print("nn threshold: ", nn_thresh)
tracker = PointTracker(max_length=2, nn_thresh=nn_thresh)
# matches = tracker.nn_match_two_way(desc, warped_desc, nn_)
tracker.update(keypoints.T, desc.T)
tracker.update(warped_keypoints.T, warped_desc.T)
matches = tracker.get_matches().T
mscores = tracker.get_mscores().T
# mAP
# matches = data['matches']
print("matches: ", matches.shape)
print("mscores: ", mscores.shape)
print("mscore max: ", mscores.max(axis=0))
print("mscore min: ", mscores.min(axis=0))
return matches, mscores
def getInliers(matches, H, epi=3, verbose=False):
"""
input:
matches: numpy (n, 4(x1, y1, x2, y2))
H (ground truth homography): numpy (3, 3)
"""
from evaluations.detector_evaluation import warp_keypoints
# warp points
warped_points = warp_keypoints(matches[:, :2], H) # make sure the input fits the (x,y)
# compute point distance
norm = np.linalg.norm(warped_points - matches[:, 2:4],
ord=None, axis=1)
inliers = norm < epi
if verbose:
print("Total matches: ", inliers.shape[0], ", inliers: ", inliers.sum(),
", percentage: ", inliers.sum() / inliers.shape[0])
return inliers
def getInliers_cv(matches, H=None, epi=3, verbose=False):
import cv2
# count inliers: use opencv homography estimation
# Estimate the homography between the matches using RANSAC
H, inliers = cv2.findHomography(matches[:, [0, 1]],
matches[:, [2, 3]],
cv2.RANSAC)
inliers = inliers.flatten()
print("Total matches: ", inliers.shape[0],
", inliers: ", inliers.sum(),
", percentage: ", inliers.sum() / inliers.shape[0])
return inliers
def computeAP(m_test, m_score):
from sklearn.metrics import average_precision_score
average_precision = average_precision_score(m_test, m_score)
print('Average precision-recall score: {0:0.2f}'.format(
average_precision))
return average_precision
def flipArr(arr):
return arr.max() - arr
if args.sift:
assert result is not None
matches, mscores = result['matches'], result['mscores']
else:
matches, mscores = getMatches(data)
real_H = data['homography']
if inliers_method == 'gt':
# use ground truth homography
print("use ground truth homography for inliers")
inliers = getInliers(matches, real_H, epi=3, verbose=verbose)
else:
# use opencv estimation as inliers
print("use opencv estimation for inliers")
inliers = getInliers_cv(matches, real_H, epi=3, verbose=verbose)
## distance to confidence
if args.sift:
m_flip = flipArr(mscores[:]) # for sift
else:
m_flip = flipArr(mscores[:,2])
if inliers.shape[0] > 0 and inliers.sum()>0:
# m_flip = flipArr(m_flip)
# compute ap
ap = computeAP(inliers, m_flip)
else:
ap = 0
mAP.append(ap)
if args.outputImg:
# draw warping
output = result
# img1 = image/255
# img2 = warped_image/255
img1 = image
img2 = warped_image
img1 = to3dim(img1)
img2 = to3dim(img2)
H = output['homography']
warped_img1 = cv2.warpPerspective(img1, H, (img2.shape[1], img2.shape[0]))
# from numpy.linalg import inv
# warped_img1 = cv2.warpPerspective(img1, inv(H), (img2.shape[1], img2.shape[0]))
img1 = np.concatenate([img1, img1, img1], axis=2)
warped_img1 = np.stack([warped_img1, warped_img1, warped_img1], axis=2)
img2 = np.concatenate([img2, img2, img2], axis=2)
plot_imgs([img1, img2, warped_img1], titles=['img1', 'img2', 'warped_img1'], dpi=200)
plt.tight_layout()
plt.savefig(path_warp + '/' + f_num + '.png')
## plot filtered image
img1, img2 = data['image'], data['warped_image']
warped_img1 = cv2.warpPerspective(img1, H, (img2.shape[1], img2.shape[0]))
plot_imgs([img1, img2, warped_img1], titles=['img1', 'img2', 'warped_img1'], dpi=200)
plt.tight_layout()
# plt.savefig(path_warp + '/' + f_num + '_fil.png')
plt.savefig(path_warp + '/' + f_num + '.png')
# plt.show()
# draw matches
result['image1'] = image
result['image2'] = warped_image
matches = np.array(result['cv2_matches'])
ratio = 0.2
ran_idx = np.random.choice(matches.shape[0], int(matches.shape[0]*ratio))
img = draw_matches_cv(result, matches[ran_idx], plot_points=True)
# filename = "correspondence_visualization"
plot_imgs([img], titles=["Two images feature correspondences"], dpi=200)
plt.tight_layout()
plt.savefig(path_match + '/' + f_num + 'cv.png', bbox_inches='tight')
plt.close('all')
# pltImshow(img)
if args.plotMatching:
matches = result['matches'] # np [N x 4]
if matches.shape[0] > 0:
from utils.draw import draw_matches
filename = path_match + '/' + f_num + 'm.png'
ratio = 0.1
inliers = result['inliers']
matches_in = matches[inliers == True]
matches_out = matches[inliers == False]
def get_random_m(matches, ratio):
ran_idx = np.random.choice(matches.shape[0], int(matches.shape[0]*ratio))
return matches[ran_idx], ran_idx
image = data['image']
warped_image = data['warped_image']
## outliers
matches_temp, _ = get_random_m(matches_out, ratio)
# print(f"matches_in: {matches_in.shape}, matches_temp: {matches_temp.shape}")
draw_matches(image, warped_image, matches_temp, lw=0.5, color='r',
filename=None, show=False, if_fig=True)
## inliers
matches_temp, _ = get_random_m(matches_in, ratio)
draw_matches(image, warped_image, matches_temp, lw=1.0,
filename=filename, show=False, if_fig=False)
if args.repeatibility:
repeatability_ave = np.array(repeatability).mean()
localization_err_m = np.array(localization_err).mean()
print("repeatability: ", repeatability_ave)
print("localization error over ", len(localization_err), " images : ", localization_err_m)
if args.homography:
correctness_ave = np.array(correctness).mean(axis=0)
# est_H_mean_dist = np.array(est_H_mean_dist)
print("homography estimation threshold", homography_thresh)
print("correctness_ave", correctness_ave)
# print(f"mean est H dist: {est_H_mean_dist.mean()}")
mscore_m = np.array(mscore).mean(axis=0)
print("matching score", mscore_m)
if compute_map:
mAP_m = np.array(mAP).mean()
print("mean AP", mAP_m)
print("end")
# save to files
with open(save_file, "a") as myfile:
myfile.write("path: " + path + '\n')
myfile.write("output Images: " + str(args.outputImg) + '\n')
if args.repeatibility:
myfile.write("repeatability threshold: " + str(rep_thd) + '\n')
myfile.write("repeatability: " + str(repeatability_ave) + '\n')
myfile.write("localization error: " + str(localization_err_m) + '\n')
if args.homography:
myfile.write("Homography estimation: " + '\n')
myfile.write("Homography threshold: " + str(homography_thresh) + '\n')
myfile.write("Average correctness: " + str(correctness_ave) + '\n')
# myfile.write("mean est H dist: " + str(est_H_mean_dist.mean()) + '\n')
if compute_map:
myfile.write("nn mean AP: " + str(mAP_m) + '\n')
myfile.write("matching score: " + str(mscore_m) + '\n')
if verbose:
myfile.write("====== details =====" + '\n')
for i in range(len(files)):
myfile.write("file: " + files[i])
if args.repeatibility:
myfile.write("; rep: " + str(repeatability[i]))
if args.homography:
myfile.write("; correct: " + str(correctness[i]))
# matching
myfile.write("; mscore: " + str(mscore[i]))
if compute_map:
myfile.write(":, mean AP: " + str(mAP[i]))
myfile.write('\n')
myfile.write("======== end ========" + '\n')
dict_of_lists = {
'repeatability': repeatability,
'localization_err': localization_err,
'correctness': np.array(correctness),
'homography_thresh': homography_thresh,
'mscore': mscore,
'mAP': np.array(mAP),
# 'est_H_mean_dist': est_H_mean_dist
}
filename = f'{save_file[:-4]}.npz'
logging.info(f"save file: {filename}")
np.savez(
filename,
**dict_of_lists,
)
if __name__ == '__main__':
import argparse
logging.basicConfig(format='[%(asctime)s %(levelname)s] %(message)s',
datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO)
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str)
parser.add_argument('--sift', action='store_true', help='use sift matches')
parser.add_argument('-o', '--outputImg', action='store_true')
parser.add_argument('-r', '--repeatibility', action='store_true')
parser.add_argument('-homo', '--homography', action='store_true')
parser.add_argument('-plm', '--plotMatching', action='store_true')
args = parser.parse_args()
evaluate(args)