-
Notifications
You must be signed in to change notification settings - Fork 24
/
model_video.py
260 lines (230 loc) · 10.2 KB
/
model_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import torch.nn.functional as F
from torch import nn
from torch.nn import Module
import torch
from audioUtils.hparams import hparams
class MyUpsample(Module):
__constants__ = ['size', 'scale_factor', 'mode', 'align_corners', 'name']
def __init__(self, size=None, scale_factor=None, mode='nearest', align_corners=None):
super(MyUpsample, self).__init__()
self.name = type(self).__name__
self.size = size
self.scale_factor = scale_factor if scale_factor else None
self.mode = mode
self.align_corners = align_corners
def forward(self, input):
return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners)
def extra_repr(self):
if self.scale_factor is not None:
info = 'scale_factor=' + str(self.scale_factor)
else:
info = 'size=' + str(self.size)
info += ', mode=' + self.mode
return info
class VideoGenerator(nn.Module):
# initializers
def __init__(self, d=128, dim_neck=32, use_window=True, use_256=False):
super(VideoGenerator, self).__init__()
self.deconv1 = nn.ConvTranspose2d(256, d*8, 4, 1, 0)
self.deconv1_bn = nn.BatchNorm2d(d*8)
self.deconv2 = nn.ConvTranspose2d(d*8, d*4, 4, 2, 1)
self.deconv2_bn = nn.BatchNorm2d(d*4)
self.deconv3 = nn.ConvTranspose2d(d*4, d*2, 4, 2, 1)
self.deconv3_bn = nn.BatchNorm2d(d*2)
self.deconv4 = nn.ConvTranspose2d(d*2, d, 4, 2, 1)
self.deconv4_bn = nn.BatchNorm2d(d)
self.deconv5 = nn.ConvTranspose2d(d, d//2, 4, 2, 1)
self.deconv5_bn = nn.BatchNorm2d(d//2)
if use_256:
self.deconv6 = nn.ConvTranspose2d(d // 2, d // 4, 4, 2, 1)
self.deconv6_bn = nn.BatchNorm2d(d // 4)
self.deconv7 = nn.ConvTranspose2d(d // 4, 3, 4, 2, 1)
else:
self.deconv7 = nn.ConvTranspose2d(d // 2, 3, 4, 2, 1)
if not use_window:
self.lstm = nn.LSTM(dim_neck*2, 256, 1, batch_first=True)
else:
self.window = nn.Conv1d(in_channels=dim_neck*2, out_channels=256, kernel_size=64, stride=4, padding=30)
self.use_window = use_window
self.use_256 = use_256
# weight_init
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)
# forward method
def forward(self, input, return_feature=False):
# x = F.relu(self.deconv1(input))
# print(input.shape)
if self.use_window:
input = self.window(input.transpose(1,2)).transpose(1,2)
else:
input, _ = self.lstm(input)
# print(input.shape)
batch_sz, num_frames, feat_dim = input.shape
input = input.reshape(-1, feat_dim, 1, 1)
x = F.relu(self.deconv1_bn(self.deconv1(input)))
x = F.relu(self.deconv2_bn(self.deconv2(x)))
x = F.relu(self.deconv3_bn(self.deconv3(x)))
x = F.relu(self.deconv4_bn(self.deconv4(x)))
x = F.relu(self.deconv5_bn(self.deconv5(x)))
if self.use_256:
x = F.relu(self.deconv6_bn(self.deconv6(x)))
x = torch.tanh(self.deconv7(x))
x = x.reshape(batch_sz, num_frames, x.shape[1], x.shape[2], x.shape[3])
if return_feature:
return x, input
return x
def normal_init(m, mean, std):
if isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Conv2d):
m.weight.data.normal_(mean, std)
m.bias.data.zero_()
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def conv3d(in_planes, out_planes, stride=1):
return nn.Conv3d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
# Upsale the spatial size by a factor of 2
def upBlock(in_planes, out_planes):
block = nn.Sequential(
# nn.Upsample(scale_factor=2, mode='nearest'),
# conv3x3(in_planes, out_planes),
MyUpsample(scale_factor=(1,2,2), mode='nearest'),
conv3d(in_planes, out_planes),
nn.BatchNorm3d(out_planes),
nn.ReLU(True))
return block
class ResBlock(nn.Module):
def __init__(self, channel_num):
super(ResBlock, self).__init__()
self.block = nn.Sequential(
conv3x3(channel_num, channel_num),
nn.BatchNorm2d(channel_num),
nn.ReLU(True),
conv3x3(channel_num, channel_num),
nn.BatchNorm2d(channel_num))
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
residual = x
out = self.block(x)
out += residual
out = self.relu(out)
return out
class STAGE2_G(nn.Module):
def __init__(self, residual=False):
super(STAGE2_G, self).__init__()
self.STAGE1_G = VideoGenerator()
# fix parameters of stageI GAN
# for param in self.STAGE1_G.parameters():
# param.requires_grad = False
self.define_module()
self.residual_video = residual
def _make_layer(self, block, channel_num):
layers = []
for i in range(4):
layers.append(block(channel_num))
return nn.Sequential(*layers)
def define_module(self):
ngf = 32
# TEXT.DIMENSION -> GAN.CONDITION_DIM
# --> 4ngf x 32 x 32
self.encoder = nn.Sequential(
conv3x3(3, ngf),
nn.ReLU(True),
nn.Conv2d(ngf, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
nn.Conv2d(ngf * 2, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True))
self.hr_joint = nn.Sequential(
conv3x3(256 + ngf * 4, ngf * 4),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True))
self.residual = self._make_layer(ResBlock, ngf * 4)
# --> 2ngf x 64 x 64
self.upsample1 = upBlock(ngf * 4, ngf * 2)
# --> ngf x 128 x 128
self.upsample2 = upBlock(ngf * 2, ngf)
# --> ngf // 2 x 256 x 256
self.upsample3 = upBlock(ngf, ngf // 2)
# --> ngf // 4 x 512 x 512
self.upsample4 = upBlock(ngf // 2, ngf // 4)
# --> 3 x 512 x 512
self.img = nn.Sequential(
conv3d(ngf // 4, 3),
nn.Tanh())
def forward(self, input, train=False):
stage1_video, audio_embedding = self.STAGE1_G(input, return_feature=True)
batch_sz, num_frames, _,_,_ = stage1_video.shape
encoded_frames = self.encoder(stage1_video.reshape(batch_sz*num_frames,3,128,128))
c_code = audio_embedding.reshape(batch_sz*num_frames,256,1,1)
c_code = c_code.repeat(1, 1, 32, 32)
i_c_code = torch.cat([encoded_frames, c_code], 1)
h_code = self.hr_joint(i_c_code)
h_code = self.residual(h_code) # (bs*num_frame)*4ngf*32*32
h_code = h_code.reshape(batch_sz, num_frames, -1, 32, 32).transpose(2,1)
h_code = self.upsample1(h_code)
h_code = self.upsample2(h_code)
h_code = self.upsample3(h_code)
h_code = self.upsample4(h_code)
stage2_video = self.img(h_code)
stage2_video = stage2_video.transpose(2,1).reshape(batch_sz, num_frames, 3, 512, 512)
if self.residual_video:
stage2_video = MyUpsample(scale_factor=(1,4,4), mode='nearest')(stage1_video) + stage2_video
if train:
return stage1_video, stage2_video
return stage2_video
class VideoEncoder(nn.Module):
def __init__(self):
super(VideoEncoder, self).__init__()
self.encoder = nn.Sequential(
nn.Conv3d(3, 64, kernel_size=(3,4,4), stride=(1,2,2), padding=1, bias=False), # 32*256*256
nn.BatchNorm3d(64),
nn.ReLU(True),
nn.Conv3d(64, 128, kernel_size=(3, 4, 4), stride=(1, 2, 2), padding=1, bias=False), # 32*128*128
nn.BatchNorm3d(128),
nn.ReLU(True),
nn.Conv3d(128, 256, kernel_size=(3, 4, 4), stride=(1, 2, 2), padding=1, bias=False), # 32*64*64
nn.BatchNorm3d(256),
nn.ReLU(True),
nn.Conv3d(256, 256, kernel_size=(3, 4, 4), stride=(1, 2, 2), padding=1, bias=False), # 32*32*32
nn.BatchNorm3d(256),
nn.ReLU(True),
nn.Conv3d(256, 256, kernel_size=(3, 4, 4), stride=(1, 2, 2), padding=1, bias=False), # 32*16*16
nn.BatchNorm3d(256),
nn.ReLU(True),
nn.Conv3d(256, 128, kernel_size=(3, 4, 4), stride=(1, 2, 2), padding=1, bias=False), # 32*8*8
nn.BatchNorm3d(128),
nn.ReLU(True),
nn.Conv3d(128, 128, kernel_size=(3, 4, 4), stride=(1, 2, 2), padding=1, bias=False), # 32*4*4
nn.BatchNorm3d(128),
nn.ReLU(True),
nn.Conv3d(128, 128, kernel_size=(3, 4, 4), stride=(1, 2, 2), padding=1, bias=False), # 32*2*2
nn.BatchNorm3d(128),
nn.ReLU(True),
nn.Conv3d(128, 128, kernel_size=(3, 4, 4), stride=(1, 2, 2), padding=1, bias=False), # 32*1*1
nn.BatchNorm3d(128),
nn.ReLU(True),
)
self.projection = nn.Sequential(
nn.Conv1d(128, 64, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm1d(64),
nn.ReLU(True),
nn.Conv1d(64, 64, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm1d(64),
nn.ReLU(True),
nn.Conv1d(64, 64, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm1d(64),
nn.ReLU(True),
nn.Conv1d(64, 64, kernel_size=3, stride=1, padding=1, bias=True)
)
def forward(self, x):
# batch * time * channel * 512 * 512
batch_sz, num_frames, _, _, _ = x.shape
x = x.transpose(2, 1)
x = self.encoder(x) # batch * 128 * time * 1 * 1
x = x.reshape(batch_sz, 128, num_frames)
x = self.projection(x)
# print(x.shape)
return x.transpose(1,2)