-
Notifications
You must be signed in to change notification settings - Fork 11
/
resources.py
69 lines (48 loc) · 2.46 KB
/
resources.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
'''
resources:
Comparing different clustering algorithms on toy datasets
http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html#sphx-glr-auto-examples-cluster-plot-cluster-comparison-py
sklearn.cluster.SpectralClustering
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
librosa.core.stft
https://librosa.github.io/librosa/generated/librosa.core.stft.html?highlight=stft#librosa.core.stft
matplotlib.mlab.specgram
http://matplotlib.org/api/mlab_api.html#matplotlib.mlab.specgram
Python find audio frequency and amplitude over time
http://stackoverflow.com/questions/6970943/python-find-audio-frequency-and-amplitude-over-time
spectrogram // mathworks
https://www.mathworks.com/help/signal/ref/spectrogram.html
Short Time Fourier Transform using Python and Numpy
https://kevinsprojects.wordpress.com/2014/12/13/short-time-fourier-transform-using-python-and-numpy/
numpy.fft.fft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft.html#numpy.fft.fft
nils-werner/stft
https://github.com/nils-werner/stft
more:
numpy.fft.fft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft.html
numpy.fft.rfft
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.rfft.html
numpy.fft.fftfreq
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fftfreq.html
Color Palettes in Seaborn
https://chrisalbon.com/python/seaborn_color_palettes.html
py-webrtcvad
https://github.com/wiseman/py-webrtcvad
http://stackoverflow.com/questions/30409539/scipy-numpy-audio-classifier-voice-speech-activity-detection
https://pypi.python.org/pypi/webrtcvad
bob.bio.spear 3.0.1
https://pypi.python.org/pypi/bob.bio.spear
Single Speaker Word Recognition With Hidden Markov Models
https://kastnerkyle.github.io/posts/single-speaker-word-recognition-with-hidden-markov-models/
pydub
http://pydub.com/
https://github.com/jiaaro/pydub
Independent component analysis
https://en.wikipedia.org/wiki/Independent_component_analysis
http://scikit-learn.org/stable/auto_examples/decomposition/plot_ica_blind_source_separation.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
word2vec
http://nadbordrozd.github.io/blog/2016/05/20/text-classification-with-word2vec/
https://en.wikipedia.org/wiki/Word2vec
'''